GCSE
COMPUTER SCIENCE
8520/1
PAPER 1

Mark scheme
Specimen 2015
V0.1

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events, in which all associates participate, and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised, they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

The following annotation is used in the mark scheme:
; - means a single mark
// - means alternative response
/ - means an alternative word or sub-phrase
A - means acceptable creditworthy answer. Also used to denote a valid answer that goes beyond the expectations of the GCSE syllabus.
R - means reject answer as not creditworthy
NE - means not enough
I - means ignore
DPT - in some questions a specific error made by a candidate, if repeated, could result in the candidate failing to gain more than one mark. The DPT label indicates that this mistake should only result in a candidate losing one mark on the first occasion that the error is made. Provided that the answer remains understandable, subsequent marks should be awarded as if the error was not being repeated.

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student's answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

Qu	Part	Marking guidance	Total marks

01	1	2 marks for AO1 (recall) $\mathbf{1}$ mark for each correct lozenge shaded; A (It saves the programmer time) C (Program code written in high-level language is often easier for humans to understand) R. if more than two lozenges are shaded.	2

01	2	Mark is for AO1 (recall) Examples include: I/ A compiler does not exist for the hardware; I/ Is a small embedded device; //The programmer wants a fine level of control over their program; // Maintaining old code/machinery;	1

01	3	Mark is for AO1 (understanding) Reward any correct answer.	1
Examples include: Assembly language is easier for humans to read; A human programmer is less likely to make mistakes in assembly language; It is easier to remember the assembly instructions than the binary codes;			

02	2	Mark is for AO2 (apply) $-18 ;$ Follow on for the last value of b given in the trace table in (1a). R. b	1

02	3	Mark is for AO2 (apply) $0 ;$	1

03	1	Mark is for AO2 (apply) B (0) only; If more than one lozenge shaded then mark is not awarded	1

03	2	Mark is for AO2 (apply) C (\leq) only; If more than one lozenge shaded then mark is not awarded	1

03	3	Mark is for AO2 (apply) C (1) only; If more than one lozenge shaded then mark is not awarded	1

03	4	Mark is for AO2 (apply) $\mathbf{D}(y+1)$ only; If more than one lozenge shaded then mark is not awarded	1

| 04 | 1 | 4 marks for AO2 (apply)
 Mark as follows (max 4):
 1 mark for incrementing i by 1 at least twice;
 1 mark for the last value of i as 6;
 1 mark for all values of arr [i] correct and in the correct order;
 1 mark for setting found to be true once;
 1 mark for anything written in the val column
 The completed trace table should have these values although the
 candidate may have entered the values on different rows (do not
 penalise as long as the order of the values is correct). |
| :--- | :--- | :--- | :--- | :--- |
| \qquadfound i arr [i] | 4 | |
| false | 1 | 3 |
| | 2 | 5 |

| | | 4 43
 true 5 655
 6
 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

04	2	Mark is for AO1 (understanding) linear search; R. search	1

04	3	Mark is for AO3 (evaluate) Mark as follows: D (WHILE $\mathrm{i} \leq 5$ AND found = false) only; If more than one lozenge shaded then mark is not awarded	1

04	4	4 marks for AO3 (program) Mark as follows: 1 mark for checking if the value has been found; 1 mark for setting i to -1 if it hasn't; 1 mark for setting i to (i-1) if it has; 1 mark for using selection (IF-ELSE, two IFs or equivalent) An example answer is: ```IF found = true THEN i}\leftarrow i - 1 ELSE i}\leftarrow- ENDIF```	4

05	1	2 marks for AO2 (apply) 4 marks for AO3 (2 marks design, 2 marks program) Mark as follows: 1 mark (AO2) for clearly calling the subroutine Checker (I. spelling errors); 1 mark (AO2) for including in the subroutine signature/interface the parameters width, height and colour_depth (different parameter names are allowed but must obviously refer to these values); 1 mark (AO3) for multiplying the three input parameters together (the answer does not necessarily have to be stored in a variable);	6

	1 mark (AO3) for using an IF-ELSE statement (A. alternative correct logic such as two IF statements); $\mathbf{1}$ mark (AO3) for checking that the product of the input is less than or equal to 16,000 (R. just less than A. alternative correct logic such as > $16,000) ;$ 1 mark (AO3) for returning true and false in different parts of the IF - ELSE (A. the condition is incorrect);	

05	2	4 Marks for AO2 (apply) Mark as follows: 1 mark for each correct frequency-value pair up to a maximum of four; The correct answer is: $60,71,120,71$	4
A. equivalent symbols such as (6,0), (7,1) etc A. if frequency and value are the other way around, ie 06,17, etc			

05	3	Mark is for AO1 (understand) A (It is most effective on images that have many continuous pixels of the same colour) only; If more than one lozenge shaded then mark is not awarded	1

07	3	3 marks for AO2 (apply) Mark as follows: 1 mark if F and B are both inputs to an OR gate; 1 mark if S and the output of F and B (allowing for earlier errors) are inputs to an AND gate; $\mathbf{1}$ mark if the output of the gate that has S as one input, and the output of F and B as another input, has its output connected to D;	3

| The completed circuit is shown here: | |
| :--- | :--- | :--- |

$\left.\begin{array}{|l|l|l|l|l|l|}\hline 08 & 1 & \begin{array}{l}3 \text { marks for AO2 (apply) } \\ \text { Mark as follows: } \\ \text { 1 mark for the robot moving forward 2 squares; } \\ \text { 1 mark for the robot turning left and moving forward } 1 \text { square; } \\ \text { 1 mark for the robot turning right and moving forward } 1 \text { square; }\end{array} & 3 \\ \text { A. any follow on from an earlier mistake }\end{array}\right]$

09	1	4 marks for AO2 (apply) Mark as follows: 1 mark for num2 changing to 24; 1 mark for num2 changing to 9; 1 mark for num1 changing to 6; 1 mark for both num1 and num2 ending as 3; The completed trace table is shown here (candidates' values may appear on different rows):	4
num1 num2 15 39 24 6 9 3 3			

09	2	Mark is for AO1 (understanding) $4 ;$	1

09	3	Mark is for AO1 (understanding) $3 ;$	1

09	4	Mark is for AO1 (understanding) $4 ;$	1

09	5	2 marks for AO1 (understanding) 1 mark for the benefit of using a subroutine; 1 mark for the explanation that matches the benefit; Examples include: It allows code reuse; because the code can be called in different places in the code without being written out in full; It is easier to test / because it can be tested in isolation from the rest of the code; It is easier to maintain / because as long as the interface is maintained it can be safely changed or rewritten;	2

10	1	Mark is for AO2 (apply) B (bitmappixel) only; R. if more than one lozenge shaded	1
10	2	Mark is for AO2 (apply) C (101) only; If more than one lozenge shaded then mark is not awarded	1

10	3	Mark is for AO1 (understanding) ASCII // Unicode // EBCDIC A. any other commonly known character encoding	1

10	4	5 marks for AO2 (apply) 4 marks for AO3 (2 design, 2 program) Mark as follows: 1 mark (AO2) for comparing the length of the two strings; 1 mark (AO3) for returning false if the prefix is longer than the word; 1 mark (AO2) for using iteration to compare characters in turn; 1 mark (AO2) for using a condition that will compare all characters in the prefix if needed (ie the condition may have the opposite value if two characters in word and pre are found to be different); 1 mark (AO3) for using an index variable to access the individual characters in the array; 1 mark (AO2) for using selection to check if the characters of both arrays are the same (or not the same if the opposite logic is used);	9

aqa.org.uk
Copyright © 2015 AQA and its licensors. All rights reserved. AQA Education (AQA) is a registered charity (registered charity number 1073334) and a company limited by guarantee registered in England and Wales (company number 3644723). Registered address: AQA, Devas Street, Manchester M15 6EX

