шјес
cbac

GCSE MARKING SCHEME

SUMMER 2016

SCIENCE - CHEMISTRY C2
 4472/01/02

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE Science - Chemistry 2

Summer 2016
Mark Scheme

Question Number							
FT HT	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
1	(a)		2	lithium and oxygen \rightarrow lithium oxide sodium and chlorine \rightarrow sodium chloride iron and fluorine \rightarrow iron fluoride lithium and water \rightarrow lithium hydroxide and hydrogen all 4 for (2) any 2/3 (1)			
	(b)		2	lithium red (1) sodium yellow (1)	orange		
	(c)		2	$30 \text { (2) }$ if incorrect allow (1) for recognising the presence of two Li atoms and one O atom			

Question Number								
FT	HT	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
7	1	(a)		2	D and E (1) both contain 2 shells (occupied by electrons) (1)			
		(b)		1	B because it has a total of 15 electrons	2,8,5	15 protons	
		(c)		3	any three for (1) each - contains 13 protons - contains 13 electrons - contains 14 neutrons - electronic configuration is $2,8,3$ / has 3 electron shells / has 3 outer shell electrons		atomic number mass number	

Question Number							
FT ${ }^{\text {HT }}$	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
4	(a)		2	more oxygen dissolves at lower temperature (1) more dissolved oxygen will sustain / support more fish (1)			
	(b)		2	$\begin{aligned} & 9\left(\mathrm{mg} \text { per } \mathrm{dm}^{3}\right) \text { - read from graph (1) } \\ & 0.9 \mathrm{~g}(1) \end{aligned}$ award (2) for correct answer only			
	(c)		2	$\begin{aligned} & 0.014 \mathrm{~g} \text { oxygen in } 1 \mathrm{dm}^{3}(1) \\ & 0.3 .3=235 \end{aligned}$ accept any sensible value based on calculation			

Question Number							
FT HT	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
7	(a)	(i)	3	become more reactive up group or converse (1) any 2 for (1) each - chlorine will displace both bromine (from bromide) and iodine (from iodide) therefore most reactive - iodine doesn't displace either of the others so least reactive - bromide displaces iodine (from iodide) but not chlorine (from chloride) therefore more reactive than iodine but less reactive then chlorine	$\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$		
		(ii)	3	reactant formulae $\mathrm{Cl}_{2}+\mathrm{KI}(1)$ product formulae $\mathrm{I}_{2}+\mathrm{KCI}(1)$ balancing $\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+2 \mathrm{KCl}(1)$ all formulae must be correct to award balancing mark	ionic equation		
	(b)		3	$\begin{aligned} & M_{\mathrm{r}}(\mathrm{AgBr})=188 \text { and } M_{\mathrm{r}}\left(\mathrm{AgNO}_{3}\right)=170 \quad(1) \\ & \frac{47}{188}=0.25(1) \\ & 0.25 \times 170=42.5(1) \\ & \text { award (3) for correct answer only } \\ & \text { accept alternative method } \\ & \text { ecf possible here } \end{aligned}$			

4472-01+02 GCSE Science-Chemistry C2 MS Summer 2016/LG

