| Surname | Centre
 Number | Candidate
 Number |
| :--- | :--- | :--- | :--- |
| Other Names | | |

GCSE

WJEC CBAC

4472/02

ADDITIONAL SCIENCE/CHEMISTRY

CHEMISTRY 2

HIGHER TIER
A.M. THURSDAY, 15 May 2014

1 hour

Suitable for Modified Language Candidates

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	5	
2.	6	
3.	7	
4.	6	
5.	4	
6.	4	
7.	7	
8.	5	
9.	5	
10.	5	
11.	6	
Total	60	

Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.
Assessment will take into account the quality of written communication (QWC) used in your answers to questions 4 and 11.
The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

[^0]1. (a) The following processes are used in the treatment of our water supply.
sedimentation filtration chlorination

State the purpose of each process.
Sedimentation
\qquad
\qquad
Filtration
\qquad
\qquad
Chlorination
\qquad
\qquad
(b) Drinking water can be obtained by desalination.

State what is meant by desalination and name a process by which it can be carried out.
2. Potassium reacts vigorously with water.
(a) (i) Describe what you would observe when potassium reacts with water.
\qquad
\qquad
\qquad
(ii) During a class demonstration the potassium exploded. Suggest what might have caused this to happen.
\qquad
\qquad
(b) Complete and balance the symbol equation for the reaction between potassium and water.

$$
2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow+\cdots
$$

3. The table below shows the amount of soap solution required by different samples of water to form a permanent lather. In each case $25 \mathrm{~cm}^{3}$ of the water samples were used and the soap solution was added $1 \mathrm{~cm}^{3}$ at a time.

	Volume of soap solution added $\left(\mathrm{cm}^{3}\right)$				
Sample	Test 1	Test 2	Test 3	Test 4	Mean
distilled water	2	2	2	2	2
A	8	8	9	7	8
B	11	18	12	13	
C	15	14	14	13	14
A after boiling	8	7	9	8	8
B after boiling	6	5	6	7	6
C after boiling	2	2	2	2	2

(a) Two pupils, David and Haf, calculated the mean value for sample B. David calculated a value of 13.5 and Haf calculated a value of 12. Show how both values were obtained. State which is the better value to use and give a reason for your choice.
\qquad
\qquad
\qquad
\qquad
(b) State which of water samples \mathbf{A}, \mathbf{B} and \mathbf{C} is the least hard.

Water sample \qquad
(c) State which of water samples A, B and C contains both temporary and permanent hardness. Give the reason for your answer.

Water sample \qquad
Reason \qquad
\qquad
(d) Name an ion which causes hardness in water.
\qquad
4. An atom of element \mathbf{E} is represented as follows.

35

State and explain what information this gives you about element \mathbf{E}.
You may wish to refer to the key on the Periodic Table to help you answer this question. [6 QWC]
\qquad
(b) A chemical reaction goes twice as fast if the temperature is increased by $10^{\circ} \mathrm{C}$.

At $5^{\circ} \mathrm{C}$, milk undergoes a chemical reaction that makes it go sour in 8 days.
Calculate how long it will take milk to go sour at $35^{\circ} \mathrm{C}$.
\qquad
\qquad

BLANK PAGE

6. (a) 'Hot cans' are designed to heat the food inside them when it is to be eaten. The heat is produced by mixing calcium oxide with water.

Source: Amazon

The following diagram shows the cross-section of a 'hot can'.

During a trial reaction, the temperature reached $50^{\circ} \mathrm{C}$ but a temperature of $70^{\circ} \mathrm{C}$ is required to properly heat the food.

Suggest a change that could have been made. Explain how this would lead to the can reaching the higher temperature.
\qquad
\qquad
\qquad
\qquad
(b) When chemical reactions take place bonds are broken and new bonds are formed.
Explain, in terms of bond making and breaking, why some reactions are exothermic.
7. (a) Sodium reacts with oxygen to give sodium oxide.
(i) Use the electronic structures below. Draw dot and cross diagrams to show the transfer of electrons and the formation of ions that occur as sodium oxide is formed.

$$
\text { sodium } 2,8,1 \quad \text { oxygen } 2,6
$$

(ii) Give the electronic structure of the sodium and oxide ions.

	Electronic structure
sodium ion	
oxide ion	

(b) Name the type of structure present in ammonia, NH_{3}. Explain why ammonia has a low melting point.
\qquad
\qquad
\qquad
\qquad
\qquad
8. (a) When bromine is passed over heated iron wool it glows and forms iron(III) bromide.

Write a balanced symbol equation for the reaction.
\qquad
(b) Name the substance used to test for the presence of bromide ions in iron(III) bromide solution and give the expected result.

Examiner
only
9. (a) The table below shows the names, molecular formulae and the structural formulae of the first two members of the alkene series. Complete the table by giving the structural formula of butene, $\mathrm{C}_{4} \mathrm{H}_{8}$.

Name	Molecular formula	Structural formula
ethene	$\mathrm{C}_{2} \mathrm{H}_{4}$	
propene	$\mathrm{C}_{3} \mathrm{H}_{6}$	
butene	$\mathrm{C}_{4} \mathrm{H}_{8}$	

(b) Explain how polypropene is formed from propene.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10. Many metal ores contain sulfides. Chalcocite is an important copper ore which contains copper(I) sulfide, $\mathrm{Cu}_{2} \mathrm{~S}$.

Copper can be obtained from the ore by heating in air.
The equation for the reaction that takes place is as follows.

$$
\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{Cu}+\mathrm{SO}_{2}
$$

(a) Use the above equation. Calculate the mass of copper produced on reacting 20.5 tonnes of copper(I) sulfide with an excess of oxygen.

$$
A_{\mathrm{r}}(\mathrm{Cu})=64 \quad A_{\mathrm{r}}(\mathrm{~S})=32
$$

\qquad
(b) When the extraction was carried out with 20.5 tonnes of chalcocite only 12.3 tonnes of copper was formed.

Calculate the percentage of impurity present in the ore.
11. Describe how reactions involving chlorine, bromine and iodine can be used to show the trend in reactivity in Group 7 elements.

You should include equations in your answer.

FORMULAE FOR SOME COMMON IONS

POSITIVE IONS		NEGATIVE IONS	
Name	$\mathrm{Formula}^{3}$	Name	Formula
Aluminium	Al^{3+}	Bromide	Br^{-}
Ammonium	$\mathrm{NH}_{4}{ }^{+}$	Carbonate	$\mathrm{CO}_{3}{ }^{2-}$
Barium	Ba^{2+}	Chloride	Cl^{-}
Calcium	Ca^{2+}	Fluoride	F^{-}
Copper(II)	Cu^{2+}	Hydroxide	OH^{-}
Hydrogen	H^{+}	lodide	I^{-}
Iron(II)	Fe^{2+}	Nitrate	$\mathrm{NO}_{3}{ }^{-}$
Iron(III)	Fe^{3+}	Oxide	O^{2-}
Lithium	Li^{+}	Sulfate	$\mathrm{SO}_{4}{ }^{2-}$
Magnesium	Mg^{2+}		
Nickel	Ni^{2+}		
Potassium	K^{+}		
Silver	Ag^{+}		
Sodium	Na^{+}		
Zinc	Zn^{2+}		

PERIODIC TABLE OF ELEMENTS
m

0
N

n
+
\cdots

[^0]: Examiner

 ## Answer all questions.

