Surname	Centre Number	Candida Numbe
Other Names		0

New GCSE

4462/01

SCIENCE A FOUNDATION TIER **CHEMISTRY** 1

A.M. TUESDAY, 12 June 2012

1 hour

For 1	Examiner's use	only
Question	Maximum Mark	Mark Awarded
1.	6	
2.	6	
3.	6	
4.	6	
5.	5	
6.	7	
7.	5	
8.	5	
9.	8	
10.	6	
Total	60	

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

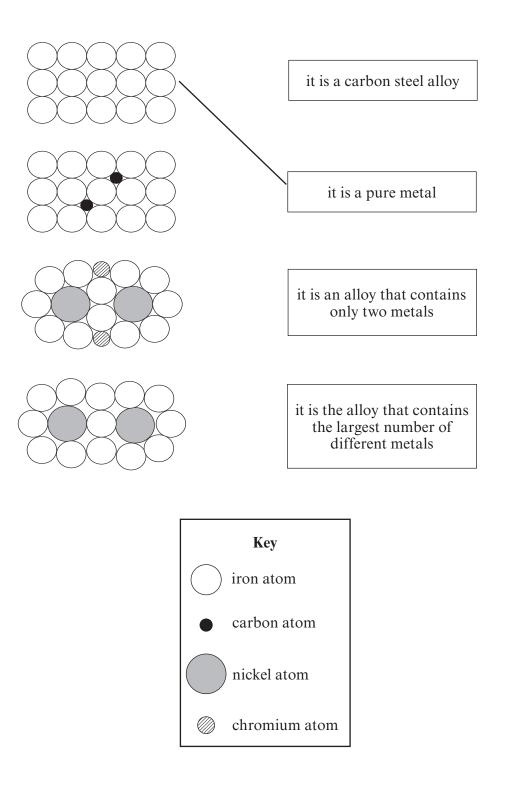
You are reminded that assessment will take into account the quality of written communication used in your answer to question 10.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

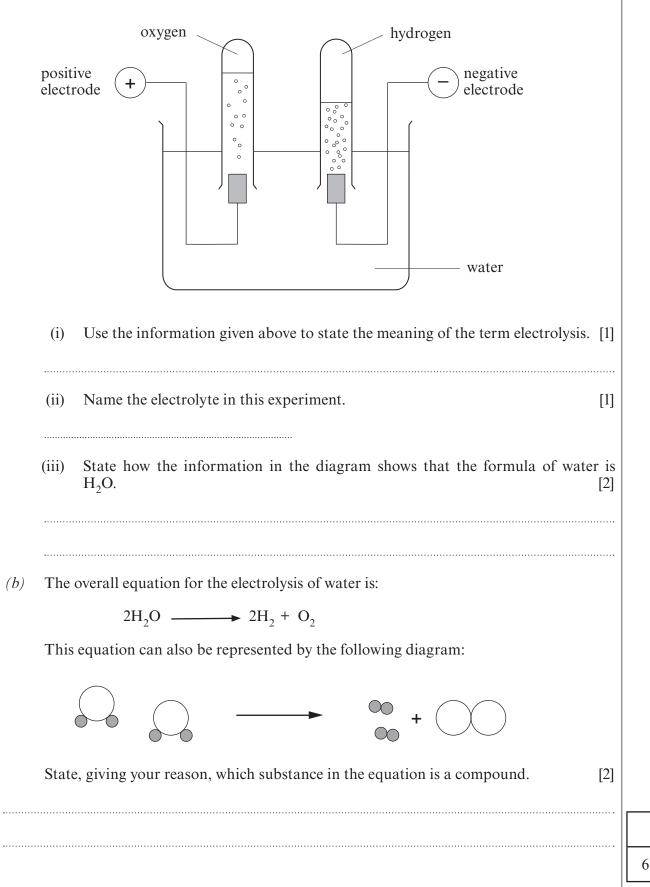
Answer all questions.

1. (a) The table below shows the physical properties of some elements.

Element	Melting point (°C)	Boiling point (°C)	Density (g/cm ³)
cobalt	1495	2870	8.9
iodine	114	184	4.9
tungsten	3422	5550	19.3
tin	232	2870	7.3
sulfur	113	445	2.1

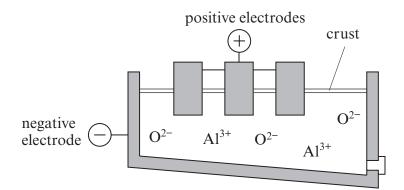

Use only the information in the table above to answer parts (i) and (ii).

(i) Give two reasons why tungsten is classified as a metal. [2]
(ii) State which element might be difficult to classify as either a metal or a non-metal. Give the reason for your choice of element. [2]


Examiner only

(b) The diagrams below show the arrangement of atoms in a pure metal and in some alloys. Use the key to identify individual atoms.
 Draw a line between each arrangement of atoms and the correct description for that substance.

One has been done for you.



2. (a) A teacher demonstrated how water can be broken down into its elements using an electric current. She used the apparatus shown below.

Examiner only

- Examiner only
- 3. (a) The diagram below shows a model of the apparatus used for the extraction of aluminium from molten aluminium oxide. On melting, aluminium oxide releases aluminium ions, Al^{3+} , and oxide ions, O^{2-} .

- (i) By drawing an arrow from the formula of **each** ion in the diagram, show the direction of movement of all the ions when the current is switched on. [2]
- (ii) Balance the symbol equation for the overall reaction occurring.

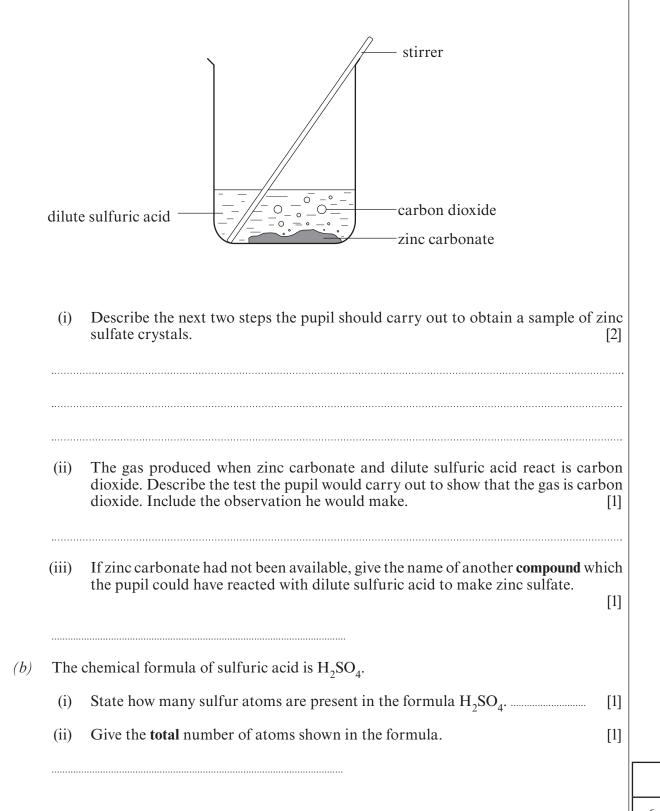
(iii) The reaction occurring at the cathode is:

 $Al^{3+} + 3e^{-} \longrightarrow Al$

Use the equation to describe how aluminium ions, Al^{3+} , form aluminium atoms, Al. [1]

(b) The table below shows some properties of aluminium, iron and copper.

	Electrical conductivity	Density (g/cm ³)	Resistance to corrosion
aluminium	very good	2.7	good
iron	good	7.8	poor
copper	very good	8.9	poor

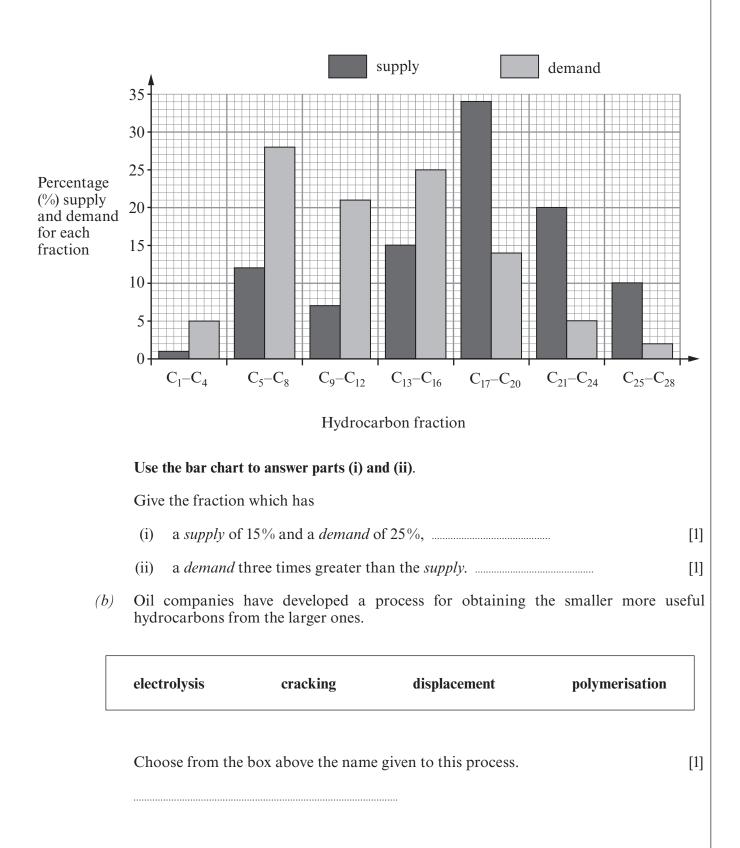

State, giving reasons, which metal is used to make over-head power cables.

[1]

[2]

4. (a) A pupil was asked to make a sample of zinc sulfate crystals from zinc carbonate.

He added *excess* zinc carbonate to dilute sulfuric acid, stirring continuously, until no more reacted.



BLANK PAGE

7

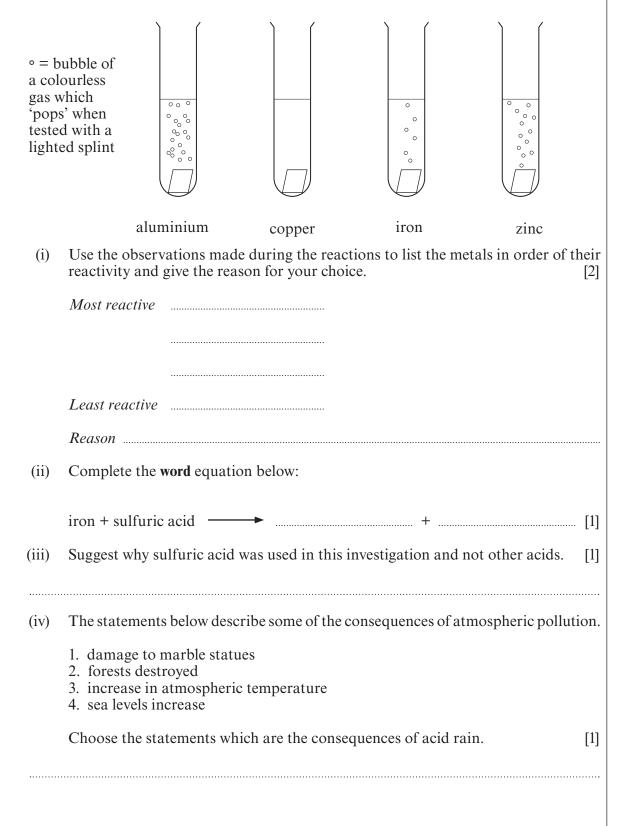
- Examiner only
- **5.** (*a*) Crude oil is a mixture of hydrocarbon compounds. Crude oil can be separated into simpler mixtures called fractions. Each fraction contains hydrocarbons of similar chain lengths.

The bar chart below shows the relative 'supply' and 'demand' for some fractions.

Examiner only

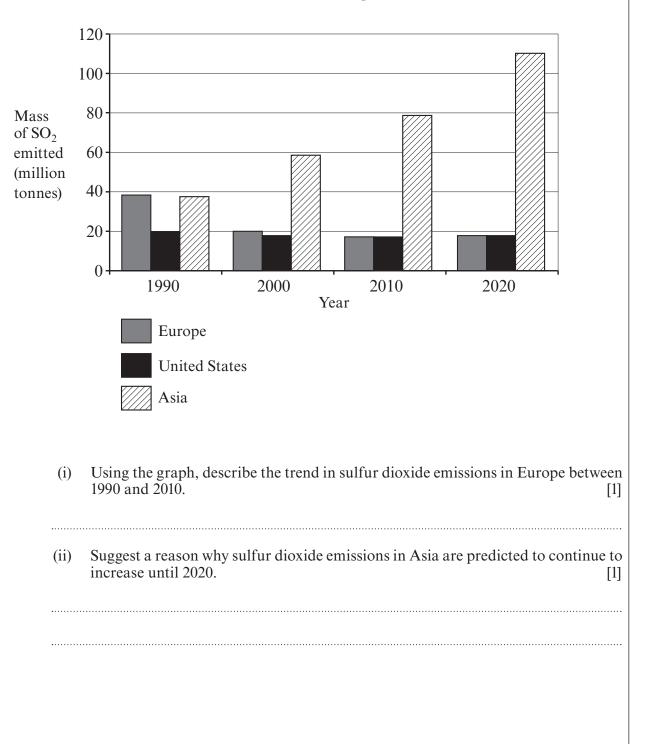
(c) Crude oil is the raw material for the manufacture of plastics. Plastics are widely used in everyday life. Wales was the first region in the UK to introduce charging for 'one-trip' plastic carrier bags.

Give **two** reasons why the Welsh Government has introduced a charge for 'one-trip' plastic carrier bags. [2]

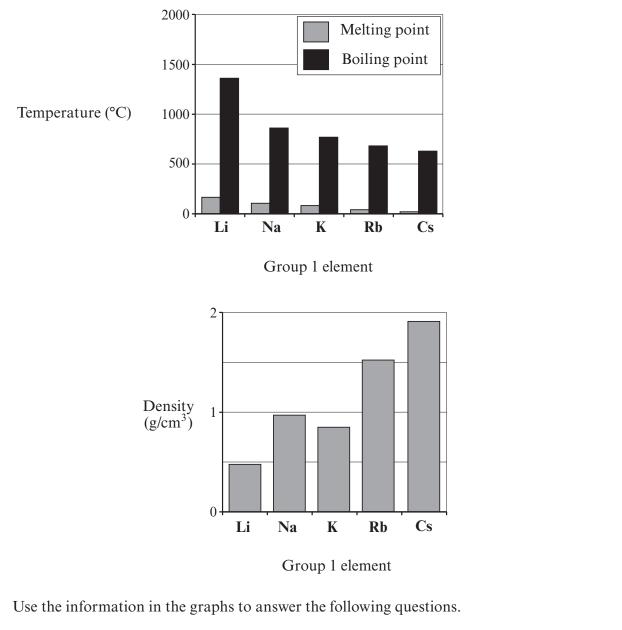

.....

Examiner only

6. (a) A group of pupils were investigating the effects of acid rain. They decided to look at the effect of dilute sulfuric acid on metals used in the building industry.


The metal samples were cleaned to give a shiny surface.

The pupils tested the metals by adding dilute acid to each of the cleaned metal samples. The test tubes below show the observations the pupils made during the investigation.



(b) The bar chart below shows the mass of sulfur dioxide emitted from Europe, the United States and Asia in 1990, 2000 and 2010 and the predicted emissions for 2020.

Examiner only

7. The graphs below show the trends in melting points, boiling points and densities of Group 1 elements.

(a) Describe the trends in the melting points and densities of the elements going down the group. [2]
 (b) Give the name of the element which has a property which does not fit a trend. [1]

Group 1 element	Boiling point (°C)
lithium	1340
sodium	880
potassium	780
rubidium	690
caesium	670

Francium lies below caesium in Group 1. Estimate, giving your reasoning, a value for the boiling point of francium.	[2]
Value°C	
Reason for value	

(b)

Distance from the plate boundary

(km)

(ii)

.....

1500

2000

2500

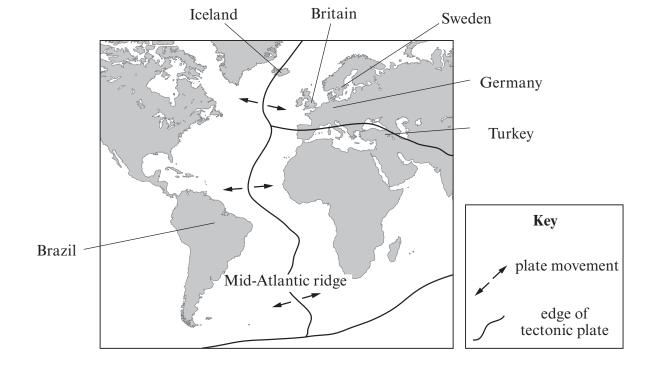
Using the data, state what conclusions can be drawn about what is happening at the plate boundary. [2]

()					
Age of rock (millions of years)	24	46	71	90	113
(i) Describe the pattern	in the result	s.			[]

(4462-01)

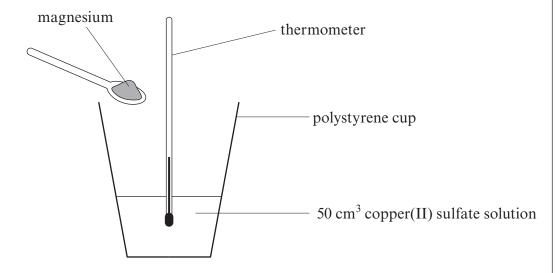
distances from a plate boundary. The data below shows the age of the rocks.

500


(a) Choose the country, labelled on the map above, in which you would expect to have the most volcanic eruptions. Give a reason for your choice of country. [2]

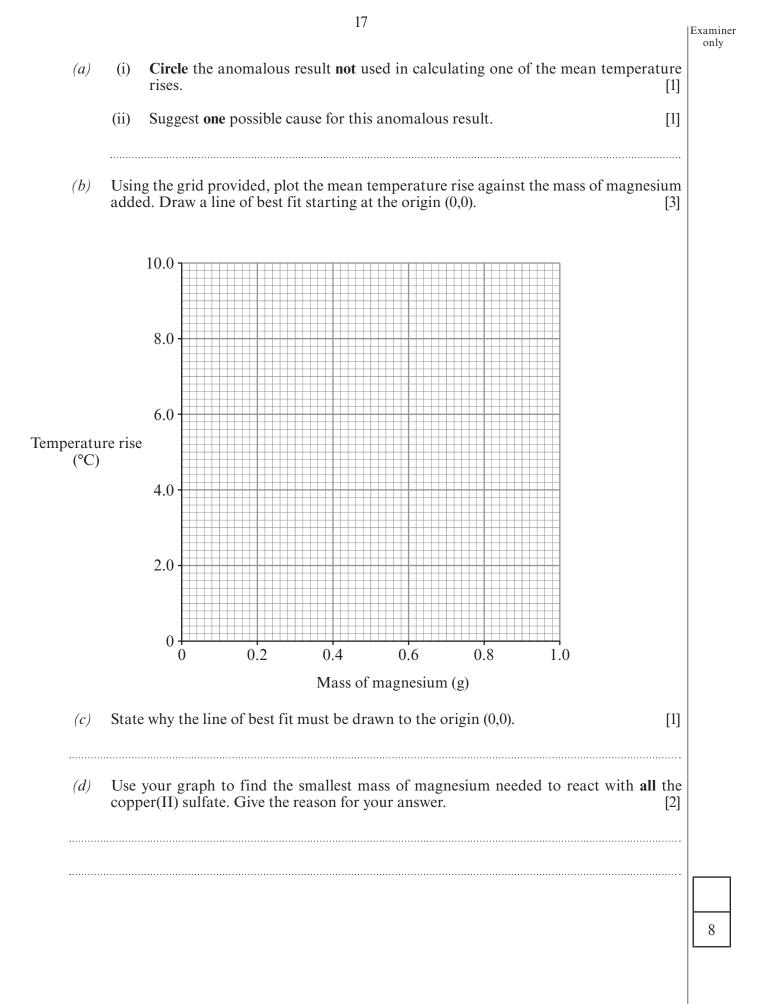
Wegener's theory of continental drift was not accepted by other scientists until several years after his death in 1930. In 1960 parts of the ocean floor were surveyed, at various

1000


8. The map below shows some information about tectonic plates.

Examiner only

BLANK PAGE


Four pupils investigated the temperature change which occurred when increasing amounts of 9. powdered magnesium were added to 50 cm³ of copper(II) sulfate solution in a polystyrene cup as shown in the diagram below.

- In the first experiment, each pupil weighed 0.2 g of magnesium. •
- The pupils then measured out 50 cm³ of copper(II) sulfate solution into a polystyrene • cup and recorded the temperature of the solution.
- The pupils then added the magnesium to the solution, swirled the polystyrene cup • and recorded the maximum temperature rise.
- They repeated the experiment using 0.4, 0.6, 0.8 and 1.0 g of magnesium powder, • using a new 50 cm³ of copper(II) sulfate solution each time.

The table below shows the results recorded.

Mass of magnesium		Maximu	n temperature	e rise (°C)	
powder (g)	Pupil A	Pupil B	Pupil C	Pupil D	Mean
0.2	3.5	3.5	3.7	3.7	3.6
0.4	6.0	5.9	6.1	6.0	6.0
0.6	7.8	8.2	8.0	8.0	8.0
0.8	9.1	9.0	3.0	8.9	9.0
1.0	8.8	9.2	8.9	9.1	9.0

		only
10.	Most scientists believe that the increase in the level of carbon dioxide in the atmosphere during the last 150 years has resulted in global warming.	
	Briefly describe and explain your understanding of the term 'global warming'. [6 QWC]	
	In your answer you should refer to	
	 its cause(s) its consequence(s) what can be done to reduce its impact 	

Examiner

POSITIV	VE IONS	NEGATI	VE IONS
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br ⁻
Ammonium	NH4 ⁺	Carbonate	CO ₃ ²⁻
Barium	Ba ²⁺	Chloride	Cl
Calcium	Ca ²⁺	Fluoride	\mathbf{F}^{-}
Copper(II)	Cu ²⁺	Hydroxide	OH⁻
Hydrogen	H^+	Iodide	I
Iron(II)	Fe ²⁺	Nitrate	NO_3^{-}
Iron(III)	Fe ³⁺	Oxide	O ²⁻
Lithium	Li ⁺	Sulfate	O^{2-} SO ₄ ²⁻
Magnesium	Mg ²⁺		
Nickel	Ni ²⁺		
Potassium	K ⁺		
Silver	Ag^+		
Sodium	Ag ⁺ Na ⁺		
Zinc	Zn^{2+}		

FORMULAE FOR SOME COMMON IONS

PERIODIC TABLE OF ELEMENTS

1	0					Gro	roup					3	4	S	9	L	0
								H									⁴ ₂ He
								Hydrogen									Helium
${}_{3}^{7}$ Li	⁹ ₄ Be											5 B	$^{12}_{6}C$	$^{14}_{7} m N$	$^{16}_{8}$ O	$^{19}_9\mathrm{F}$	$^{20}_{10}{ m Ne}$
Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
²³ Na	$^{24}_{12}{ m Mg}$											$^{27}_{13}A1$	$^{28}_{14}$ Si	$^{31}_{15}{ m P}$	$^{32}_{16}$ S	³⁵ C1	$^{40}_{18}{ m Ar}$
Sodium	Magnesium											Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
³⁹ K	$^{40}_{20}$ Ca	⁴⁵ ₂₁ Sc	⁴⁸ Ti ²²	$^{51}_{23}V$	$^{52}_{24} m Cr$	⁵⁵ Mn	$^{56}_{26}$ Fe	⁵⁹ Co	$^{59}_{28} m Ni$	64 Cu	⁶⁵ ₃₀ Zn	$^{70}_{31}$ Ga	⁷³ Ge	75 AS	⁷⁹ Se	⁸⁰ Br	⁸⁴ ₃₆ Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
⁸⁶ Rb	⁸⁸ 38 Sr	$^{89}_{39}Y$	$^{91}_{40}\mathbf{Zr}$	$^{93}_{41}{ m Nb}$	$^{96}_{42}{ m Mo}$	$^{99}_{43}{ m Tc}$	$^{101}_{44}$ Ru	¹⁰³ Rh	$^{106}_{46} \mathrm{Pd}$	$^{108}_{47}{ m Ag}$	¹¹² ₄₈ Cd	$^{115}_{49} \mathrm{In}$	$^{119}_{50}$ Sn	$^{122}_{51}$ Sb	$^{128}_{52}{ m Te}$	¹²⁷ I 53	¹³¹ ₅₄ Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
¹³³ CS	¹³⁷ Ba	¹³⁹ La	$^{179}_{72}\mathrm{Hf}$	$^{181}_{73}{ m Ta}$	$^{184}_{74}$ W	$^{186}_{75} { m Re}$	$^{190}_{76}{ m Os}$	$^{192}_{77}\mathrm{Ir}$	$^{195}_{78}\mathrm{Pt}$	$^{197}_{79}$ Au	$^{201}_{80}{ m Hg}$	$^{204}_{81}{ m Tl}$	$^{207}_{82}{ m Pb}$	$^{209}_{83}{ m Bi}$	$^{210}_{84} \mathrm{Po}$	$^{210}_{85}{ m At}$	²²² Rn
Caesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
$^{223}_{87}{ m Fr}$	$^{226}_{88}$ Ra	$^{227}_{89}$ Ac															
Francium	Radium	Actinium			Key:												
					Mass	Mass number	 _										
					Aton	Atomic number	ber —	× N	•	– Eleme	Element Symbol	lo					

Name

© WJEC CBAC Ltd.

(4462-01)