Other Names

Centre Number

0

New GCSE

4462/01

SCIENCE A FOUNDATION TIER CHEMISTRY 1

A.M. TUESDAY, 12 June 2012

l hour

Suitable for Modified Language Candidates

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	6				
2.	6				
3.	6				
4.	6				
5.	5				
6.	7				
7.	5				
8.	5				
9.	8				
10.	6				
Total	60				

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded that assessment will take into account the quality of written communication used in your answer to question 10.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.

2

1. (a) The table below shows the physical properties of some elements.

Element	Melting point (°C)	Boiling point (°C)	Density (g/cm ³)
cobalt	1495	2870	8.9
iodine	114	184	4.9
tungsten	3422	5550	19.3
tin	232	2870	7.3
sulfur	113	445	2.1

Use only the information in the table above to answer parts (i) and (ii).

(i) Give two reasons why tungsten is classified as a metal. [2]
(ii) Which element might be difficult to classify as either a metal or a non-metal? Give the reason for your choice of element. [2]

(b) The diagrams below show the arrangement of atoms in a pure metal and in some alloys. Use the key to identify individual atoms.
 Draw a line between each arrangement of atoms and the correct description for that substance.
 [2]

One has been done for you.

4462 010003

The diagram shows how water can be broken down into its elements using an electric

Examiner

2.

(a)

3. (a) The diagram below shows the apparatus used for the extraction of aluminium from molten aluminium oxide. When it melts, aluminium oxide releases aluminium ions, Al^{3+} , and oxide ions, O^{2-} .

- (i) Show the direction of movement of all the ions when the current is switched on. Draw an arrow from the formula of each ion in the diagram. [2]
- (ii) Balance the symbol equation for the overall reaction occurring.

(iii) The reaction occurring at the cathode is:

 $Al^{3+} + 3e^{-} \longrightarrow Al$

Use the equation to describe how aluminium ions, Al^{3+} , form aluminium atoms, Al. [1]

(b) The table below shows some properties of aluminium, iron and copper.

	Electrical conductivity	Density (g/cm ³)	Resistance to corrosion
aluminium	very good	2.7	good
iron	good	7.8	poor
copper	very good	8.9	poor

Which metal is used to make over-head power cables? Give the reason why.

 $4462 \\ 010005$

[1]

[2]

6

more reacted.

stirrer carbon dioxide dilute sulfuric acid zinc carbonate Describe the next two steps the pupil should carry out to obtain a sample of zinc (i) sulfate crystals. [2] (ii) The gas produced when zinc carbonate and dilute sulfuric acid react is carbon dioxide. Describe the test the pupil would carry out to show that the gas is carbon dioxide. Include the observation he would make. [1] Zinc carbonate is not available. Give the name of another compound which the (iii) pupil could have reacted with dilute sulfuric acid to make zinc sulfate. [1] (b)The chemical formula of sulfuric acid is H_2SO_4 . How many sulfur atoms are present in the formula H₂SO₄? (i) [1] (ii) Give the total number of atoms shown in the formula. [1]

BLANK PAGE

7

- Examiner only
- **5.** (*a*) Crude oil is a mixture of hydrocarbon compounds. Crude oil can be separated into simpler mixtures called fractions. Each fraction contains hydrocarbons of similar chain lengths.

The bar chart below shows the relative 'supply' and 'demand' for some fractions.

9

Give **two** reasons why the Welsh Government has introduced a charge for plastic carrier bags. [2]

6. (a) A group of pupils were investigating the effects of acid rain. They decided to look at the effect of dilute sulfuric acid on metals used in the building industry.

The metal samples were cleaned to give a shiny surface.

The pupils tested the metals by adding dilute acid to each of the cleaned metal samples. The test tubes below show the observations the pupils made during the investigation.

(b) The bar chart below shows the mass of sulfur dioxide emitted from Europe, the United States and Asia in 1990, 2000 and 2010. It also shows the predicted emissions for 2020.

The graphs below show the trends in melting points, boiling points and densities of Group 1 7. elements.

Describe the trends in the melting points and densities of the elements going down the (a)group. [2] *(b)* Give the name of the element which has a property which does not fit a trend. [1]

(c)	The table below	shows the boiling	g points of C	Group 1 elements.

Group 1 element	Boiling point (°C)
lithium	1340
sodium	880
potassium	780
rubidium	690
caesium	670

Francium lies below caesium in Group 1. Estimate a value for the boiling point of francium. Give your reasoning.	[2]
Value°C	
Reason for value	

- (a)Look at the countries labelled on the map above. Which country would you expect to have the **most** volcanic eruptions? Give a reason for your choice of country. [2]
- *(b)* Wegener's theory of continental drift was not accepted by other scientists until several
- years after his death in 1930. In 1960 parts of the ocean floor were surveyed, at various distances from a plate boundary. The data below shows the age of the rocks.

Distance from the plate boundary (km)	500	1000	1500	2000	2500
Age of rock (millions of years)	24	46	71	90	113

(4462-01)

- Describe the pattern in the results. (i)
- (ii) Use the data. What conclusions can be drawn about what is happening at the plate boundary? [2]

The map below shows some information about tectonic plates. 8.

14

© WJEC CBAC Ltd.

[1]

BLANK PAGE

9. Increasing amounts of powdered magnesium were added to 50 cm³ of copper(II) sulfate solution in a polystyrene cup. This is shown in the diagram below. Four pupils investigated the temperature change which occurred.

- In the first experiment, each pupil weighed 0.2 g of magnesium.
- The pupils then measured out 50 cm³ of copper(II) sulfate solution into a polystyrene cup. They recorded the temperature of the solution.
- The pupils then added the magnesium to the solution. They swirled the polystyrene cup and recorded the maximum temperature rise.
- They repeated the experiment using 0.4, 0.6, 0.8 and 1.0 g of magnesium powder. They used a new 50 cm³ of copper(II) sulfate solution each time.

The table	below	shows	the	results	recorded.
-----------	-------	-------	-----	---------	-----------

Mass of magnesium	Maximum temperature rise (°C)					
powdered (g)	Pupil A	Pupil B	Pupil C	Pupil D	Mean	
0.2	3.5	3.5	3.7	3.7	3.6	
0.4	6.0	5.9	6.1	6.0	6.0	
0.6	7.8	8.2	8.0	8.0	8.0	
0.8	9.1	9.0	3.0	8.9	9.0	
1.0	8.8	9.2	8.9	9.1	9.0	

		only
10.	Most scientists believe that the increase in the level of carbon dioxide in the atmosphere during the last 150 years has resulted in global warming.	
	Briefly describe and explain your understanding of the term 'global warming'. [6 QWC]	
	In your answer you should refer to	
	 its cause(s) its consequence(s) what can be done to reduce its impact 	

6

Examiner

POSITIV	/E IONS	NEGATI	VE IONS	
Name	Name Formula		Formula	
Aluminium	Al ³⁺	Bromide	Br	
Ammonium	NH ₄ ⁺	Carbonate	CO ₃ ^{2–}	
Barium	Ba ²⁺	Chloride	Cl	
Calcium	Ca ²⁺	Fluoride	\mathbf{F}^{-}	
Copper(II)	Cu ²⁺	Hydroxide	OH-	
Hydrogen	H^{+}	Iodide	I	
Iron(II)	Fe ²⁺	Nitrate	NO_3^-	
Iron(III)	Fe ³⁺	Oxide	O^{2-}	
Lithium	Li ⁺	Sulfate	SO_4^{2-}	
Magnesium	Mg ²⁺			
Nickel	Ni ²⁺			
Potassium	K ⁺			
Silver	Ag^+			
Sodium	Na ⁺			
Zinc	Zn^{2+}			

FORMULAE FOR SOME COMMON IONS

PERIODIC TABLE OF ELEMENTS

1	7					Gr_0	dn					\mathbf{e}	4	5	9		0
							L	H									⁴ ₂ He
								Hydrogen									Helium
$^{7}_{3}$ Li	⁹ ₄ Be											5 B	¹² ₆ C	$^{14}_{7} m N$	16 O	$^{19}_9\mathrm{F}$	$^{20}_{10}{ m Ne}$
Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
²³ Na	$^{24}_{12}{\rm Mg}$											$^{27}_{13}A1$	$^{28}_{14}$ Si	$^{31}_{15}{ m P}$	$^{32}_{16}$ S	³⁵ Cl	$^{40}_{18}{ m Ar}$
Sodium	Magnesium											Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
$^{39}_{19} m K$	$^{40}_{20}$ Ca	⁴⁵ ₂₁ Sc	48 Ti 22	$^{51}_{23}V$	⁵² Cr	⁵⁵ ₂₅ Mn	$^{56}_{26}$ Fe	⁵⁹ Co	⁵⁹ Ni ²⁸ Ni	64 Cu	65 Zn 30 Zn	$^{70}_{31}$ Ga	⁷³ ₃₂ Ge	75 AS	⁷⁹ Se	⁸⁰ Br	⁸⁴ Kr 36 Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
⁸⁶ Rb	⁸⁸ 38 Sr	$^{89}_{39} \mathrm{Y}$	$^{91}_{40}{ m Zr}$	⁹³ ₄₁ Nb	⁹⁶ Mo	⁹⁹ Tc	$^{101}_{44}$ Ru	¹⁰³ Rh	¹⁰⁶ Pd	$^{108}_{47}{ m Ag}$	¹¹² ₄₈ Cd	$^{115}_{49} \mathrm{In}$	$^{119}_{50}$ Sn	$^{122}_{51}$ Sb	$^{128}_{52}{ m Te}$	¹²⁷ 53	¹³¹ ₅₄ Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
¹³³ Cs	$^{137}_{56}$ Ba	¹³⁹ La	$^{179}_{72}{ m Hf}$	$^{181}_{73}{ m Ta}$	$^{184}_{74}$ W	¹⁸⁶ Re	$^{190}_{76}$ Os	$^{192}_{77}\mathrm{Ir}$	$^{195}_{78}{ m Pt}$	${}^{197}_{79}{ m Au}$	$^{201}_{80}{ m Hg}$	$^{204}_{81}{ m Tl}$	$^{207}_{82}{ m Pb}$	$^{209}_{83}{ m Bi}$	$^{210}_{84}$ Po	$^{210}_{85}{ m At}$	²²² ₈₆ Rn
Caesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
$^{223}_{87}{ m Fr}$	²²⁶ 88 88	$^{227}_{89}{ m Ac}$															
Francium	Radium	Actinium			Key:												
					Mass	number		∠									
					Atom	ic numb	ler 			- Eleme	nt Symb	loc					

Name

© WJEC CBAC Ltd.

(4462-01)