Surname	Centre Number	Candidate Number
Other Names		0

GCSE

245/01

SCIENCE CHEMISTRY FOUNDATION TIER CHEMISTRY 3

A.M. WEDNESDAY, 25 May 2011

45 minutes

For Examiner's use only								
Question	Maximum Mark	Mark Awarded						
1.	4							
2.	8							
3.	7							
4.	6							
5.	4							
6.	6							
7.	5							
8.	8							
9.	2							
Total	50							

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.

1.	The box below	gives the nar	nes of some s	separation m	ethods use	d in	chemistry

chromatography crystallisation distillation evaporation filtration

From	the hov	choose the	most suitable	a mathad to	sanarata.
ггош	me box.	choose the	most suitadi	e memoa u) separate:

(a)	sand from water;	[1]
(b)	the colours in ink;	[1]
(c)	alcohol and water;	[1]

(d) salt from water. [1]

2. (a) Read the information in the box below.

Sulphuric acid and ethanoic acid are two common acids. They both have a pH below 7 and turn litmus red. Both react with alkalis to produce a salt and water. This type of reaction is known as neutralisation.

An example of neutralisation is the reaction between sulphuric acid and sodium hydroxide to produce sodium sulphate and water.

Acids also react with metals. Sulphuric acid reacts with magnesium to produce magnesium sulphate and hydrogen. The reaction is fast and produces a lot of bubbles. It produces heat and is therefore an exothermic reaction. Ethanoic acid reacts more slowly with magnesium and the reaction produces less heat.

Use only the information in the box to answer the questions that follow.

(i)	Give the pH of an acid.	[1]
(ii)	State what is meant by a neutralisation reaction.	[1]
•••••		

(iii)	Name	the	salt	produced	when	sulphuric	acid	reacts	with	sodium	hydroxide
	solution	n.									[1]

(iv)	Give the word equation for the reaction taking place between sulphuric ac	id a	nd
	magnesium.		[2]

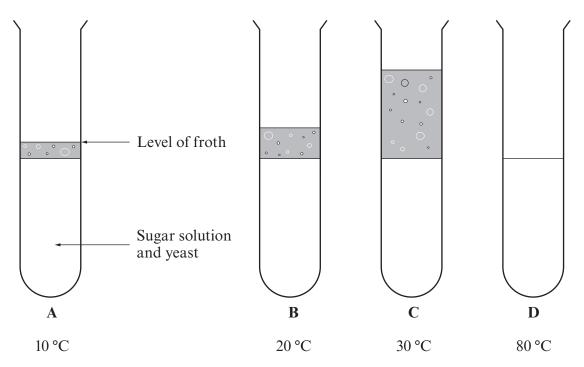
 +	 →	-	 +	

(v)	State how the reaction with magnesium shows that ethanoic acid is a weak	er acid
	than sulphuric acid.	[1]

(b) The following table shows the colours of universal indicator at different pH values.

Colour	Red	Orange	Yellow	Green	Blue	Navy blue	Purple
рН	0-2	3-4	5-6	7	8-9	10-12	13-14

A student is given some common household substances and is asked to find their pH values using universal indicator. His results are shown in the table below.


Substance	Colour of universal indicator	рН	Acid, alkali or neutral
vinegar	vinegar orange		alkali
toothpaste	blue	9	alkali
water	green	5	neutral
lemonade	yellow	5	acid

There are two errors in the table. Identify the two errors.	[2
Error 1	
Freor 2	

(0245-01)

0245 010003

3. A student carried out an experiment to find out how changes in temperature affected the rate of fermentation of sugar. He placed 20 cm³ of sugar solution in each of boiling tubes A, B, C and D, and added 1 cm³ of yeast to each tube. They were placed in water baths at different temperatures for 30 minutes. The results of the experiment are shown below.

1	(a)	(i)	Complete the diagram b	y showing the level of froth expected for tube D .	F13
((a)	(1)	Complete the diagram of	y showing the level of froth expected for tube D .	-117

(ii) Give a reason for your answer. [1]

(b) State **two** ways in which the experiment was made a fair test. [2]

2.

(c) The gas produced during this reaction turns limewater milky. Choose from the box below the name of this gas. [1]

ammonia carbon dioxide nitrogen oxygen

(d) Give a word equation for the fermentation process.

<u>t</u>

[2]

produces carbon dioxide gas when it reacts with acid

 Na^{+}

produces a lilac colour in flame test

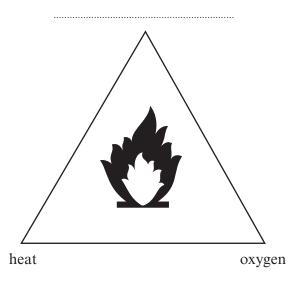
 $Cu^{2^{+}}$

gives a blue precipitate with sodium hydroxide solution

 $C1^{-}$

gives a white precipitate with silver nitrate solution

 CO_3^{2-}


produces a yellow colour in flame test

gives a yellow precipitate with silver nitrate solution

(b) A pupil was given a gas jar containing oxygen. Describe a test that could be carried out to prove that it was oxygen. Give the expected result for the test.

Turn over.

5. The following diagram shows the fire triangle.

(a)	Con	iplete the diagram of the fire triangle.	
(b)	Desc	cribe briefly what information the fire triangle provides.	[1]
	•••••		
(c)		your knowledge of the fire triangle to explain how each of the following fire fig nods works.	hting
	(i)	Pouring water on to paper burning in a bin.	[1]
	(ii)	Putting a damp cloth over the top of a burning chip pan.	[1]

5.	Limestone, made of calcium carbonate, is an important raw material. It is converted into other important substances as shown below:											
			limesto	one → quicklin	ne → slake	ed lime						
	(a) (i) State how limestone is converted into quicklime.											
		(ii)	State what is add	ed to quicklime in	n order to for	n slaked lime.		[1]				
	(b) The following box gives the formulae of some calcium compounds.											
			CaCO ₃	Ca(OH) ₂	CaO	CaCl ₂						
		Cho	ose the correct form	nula for								
		[1]										
		(ii)	quicklime,					[1]				
		(iii)	slaked lime					[1]				
	(c)	Give	e a use for limeston	e				[1]				

(0245-01)

7. (a) The following table shows the number of people admitted to a particular hospital for treatment for the effects of alcohol abuse over a period of five years.

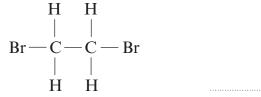
Year	2004	2005	2006	2007	2008
Number of people treated	264	346	466	499	571

	(i)	State how the number of people treated for the effects of alcohol abuse has changover time.	ged [1]
	(ii)	Give one social problem caused by alcohol abuse.	[1]
	(iii)	State one possible effect of long term alcohol abuse on an individual's health.	[1]
(b)	alco	ohol is used as a biofuel. State one advantage and one disadvantage of the use hol as a biofuel.	[2]
	Disa	idvantage	

8. The following table shows the names and formulae of some organic compounds.

Name	Formula	Structural formula
methane	CH ₄	H H—C—H H
propane	C_3H_8	
	CH₃OH	H H—C—O—H H
ethene	$\mathrm{C_2H_4}$	
ethanoic acid		$\begin{array}{c} H \\ O \\ H - C - C \\ O - H \end{array}$

(a) Complete the table.

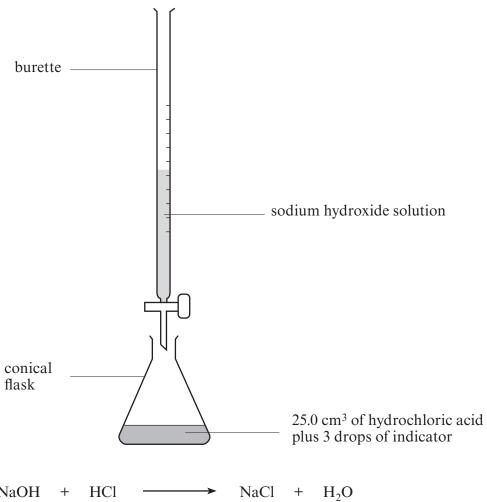

[4]

(b) Name the **two** compounds in the table that are members of the **alkane** homologous series.

and

(c) Name the compound produced when alcoholic drinks containing ethanol are left exposed to air for a period of time. [1]

(d) (i) Name the substance that reacts with bromine water to form [1]



(ii) Give **one** observation that you would make during this reaction.

[1]

Turn over.

A student added sodium hydroxide solution to 25.0 cm³ of hydrochloric acid as shown in the diagram below.

NaOH

The titration was carried out three times and the results are shown below.

	Titration readings						
	2	3					
Volume of sodium hydroxide used / cm ³	24.9	25.1	25.0				

sodium hydroxide solution. Give a reason for your answer.	[2]
	· · · · · ·

FORMULAE FOR SOME COMMON IONS

POSITIV	'E IONS	NEGATIVE IONS				
Name	Formula	Name	Formula			
Aluminium	Al ³⁺	Bromide	Br ⁻			
Ammonium	$\mathrm{NH_4}^+$	Carbonate	CO_3^{2-}			
Barium	Ba ²⁺	Chloride	Cl ⁻			
Calcium	Ca ²⁺	Fluoride	${f F}^{-}$			
Copper(II)	Cu ²⁺	Hydroxide	OH^-			
Hydrogen	H^{+}	Iodide	Ι-			
Iron(II)	Fe^{2+}	Nitrate	NO_3^-			
Iron(III)	Fe^{3+}	Oxide	O^{2-}			
Lithium	Li ⁺	Sulphate	SO_4^{2-}			
Magnesium	Mg^{2+}		·			
Nickel	Mg^{2+} Ni^{2+}					
Potassium	\mathbf{K}^{+}					
Silver	$\mathbf{Ag}^{\boldsymbol{+}}$					
Sodium	Na ⁺					

(0245-01) **Turn over.**

PERIODIC TABLE OF ELEMENTS

	်စ	um	e e	n('n	uo	'n	ton	(e	on	r,	on				
0	4He	Helium	$^{20}_{10}\mathrm{Ne}$	Neon	$\left egin{array}{l} ^{40}_{18} \mathrm{Ar} \end{array} ight $	Argon	$^{84}_{36}\mathrm{Kr}$	Krypton	131 Xe	Xenon	222 R n 86	Radon				
L			19 F	Fluorine	35 CI	Chlorine	80 Br	Bromine	I ₅₃ I	Iodine	$^{210}_{85}\mathrm{At}$	Astatine				
9			$_{8}^{16}$ O	Oxygen	$^{32}_{16}$ S	Sulphur	⁷⁹ ₃₄ Se	Selenium	¹²⁸ ₅₂ Te	Tellurium	²¹⁰ ₈₄ Po	Bismuth Polonium				
w			$ m ^{41}_{7}$	Nitrogen	$^{31}_{15}\mathbf{P}$	Phosphorus	75 AS	Arsenic	122 Sb	Antimony	$^{209}_{83}\mathrm{Bi}$	Bismuth				
4			12 C	Carbon	28 Si	Silicon	73 Ge	Germanium	119 Sn	Tin	²⁰⁷ ₈₂ Pb	Lead				
8			11 B	Boron	27 A1	Aluminium	⁷⁰ Ga	Gallium	115 In	Indium	$^{204}_{81} Tl$	Thallium			lool	
		•					$^{65}_{30}\mathrm{Zn}$	Zinc	112 Cd	Cadmium	$^{201}_{80}\mathrm{Hg}$	Mercury			Element Symbol	
							64 Cu	Copper	108 Ag	Silver	¹⁹⁷ Au	Gold			– Eleme	
							$^{59}_{28}N_{ m i}$	Nickel	106 Pd	Palladium	195 Pt	Platinum			×	Name
	H_1^1	Hydrogen					⁵⁹ Co	Cobalt	¹⁰³ ₄₅ Rh	Rhodium	$^{192}_{77}\mathrm{Ir}$	Iridium			\[\delta \cdot \	Na
roup							⁵⁶ Fe	Iron	101 44 Ru	Ruthenium	3O 061	Osmium			r	5
Gre							55 Mn	Manganese	99 Tc	Technetium	¹⁸⁶ ₇₅ Re	Rhenium			Mass number	
							52 Cr	Chromium	⁹⁶ Mo	Molybdenum	184 W	Tungsten		Key:	Mass	
							51 V 23 V	Vanadium	93 Nb	Niobium	181 73 Ta	Tantalum				
							48 Ti	Titanium	91 Zr 40	Zirconium	179 Hf	Hafnium				
							45 Sc	Scandium	${f X}_{68}^{68}$	Yttrium	¹³⁹ La	Lanthanum	$^{227}_{89}\mathrm{Ac}$	Actinium		
7			⁹ ₄ Be	Beryllium	$^{24}_{12}\mathrm{Mg}$	Magnesium	⁴⁰ Ca	Calcium	88 38 Sr	Strontium	137 Ba	Barium	$^{226}_{88}\mathrm{Ra}$	Radium		
1			$^{7}_{3}$ Li	Lithium	23 Na	Sodium	39 K	Potassium	86 Rb	Rubidium	133 Cs	Caesium	$^{223}_{87}\mathrm{Fr}$	Francium		