Chemistry Revision Notes - Calculations

1. The atomic mass of an element is the number of protons + the number of neutrons.
2. The weight of $\mathbf{1 m o l}$ of an element (in grams) is equal to the atomic mass.
3. Number of moles $=\frac{\text { mass in grams }}{\text { mass of one mole in grams }}$
4. In an equation, the mass of the reactants is equal to the mass of the products.

EXAMPLE ONE
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

$$
100 g+73 g \rightarrow 111 g+18 g+44 g
$$

$$
\therefore 100 \mathrm{~g} \mathrm{CaCO}_{3} \rightarrow 111 \mathrm{~g} \mathrm{CaCl}_{2}
$$

$$
\therefore 1 \mathrm{~g} \mathrm{CaCO} 3 \quad \rightarrow \frac{111}{100} \mathrm{~g} \mathrm{CaCl}_{2}
$$

$$
\therefore 10 \mathrm{~g} \mathrm{CaCO}_{3} \rightarrow \frac{111}{100} \times 10 \mathrm{~g} \mathrm{CaCl}_{2}=11.1 \mathrm{~g} \mathrm{CaCl}{ }_{2}
$$

5. Percentage Composition $=\frac{\text { mass of element in grams }}{\text { mass of compound in grams }} \times 100 \%$

EXAMPLE TWO
$H_{2} \mathrm{SO}_{4}=98 \mathrm{~g}, \quad \mathrm{H}_{2}=2 \mathrm{~g}$
\therefore Percentage of $H=\frac{2}{98} \times 100 \%=2 \%$
6. To calculate an empirical formula:

- Write the percentages (or masses) under the symbols.
- Divide the percentages (or masses) by the atomic mass.
- Divide by the smallest number to get a simple ratio.
- Write the numbers to the bottom-right of each element, to get a formula.

EXAMPLE THREE	
$F e$	$C l$
34.5%	65.5%
$\frac{34.5}{56}$	$\frac{65.5}{35.5}$
0.616	1.85
$\frac{0.616}{0.616}$	$\frac{1.85}{0.616}$
1	3
$\therefore 1: 3$	
$\therefore \mathrm{FeCl}_{3}$	

7. One mole of any gas occupies $\mathbf{2 4 \mathbf { d m } ^ { \mathbf { 3 } } (2 4 1) \text { at room temperature and pressure. }}$
8. Formulae are made up of different elements, expressed as symbols.
9. The bottom-right hand number in a formula, is the number of atoms of that element.
