

Н

B642/02

GENERAL CERTIFICATE OF SECONDARY EDUCATION

GATEWAY SCIENCE

CHEMISTRY B

Unit 2 Modules C4 C5 C6 (Higher Tier)

WEDNESDAY 18 JUNE 2008

Afternoon Time: 1 hour

Candidates answer on the question paper.

Additional materials (enclosed):

None

Calculators may be used.

Additional materials: Pencil

Ruler (cm/mm)

Candidate Forename				Candidate Surname				
Centre Number				Candidate Number				

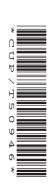
INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **60**.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE					
Section	Max.	Mark			
Α	20				
В	20				
С	20				
TOTAL	60				


This document consists of 19 printed pages and 1 blank	i bades and it blank bad	pades	printed	19	OI	consists	aocument	i nis
--	--------------------------	-------	---------	----	----	----------	----------	-------

SP (CW/SHW) T50946/5

© OCR 2008 [K/103/4265]

OCR is an exempt Charity

[Turn over

Answer **all** the questions.

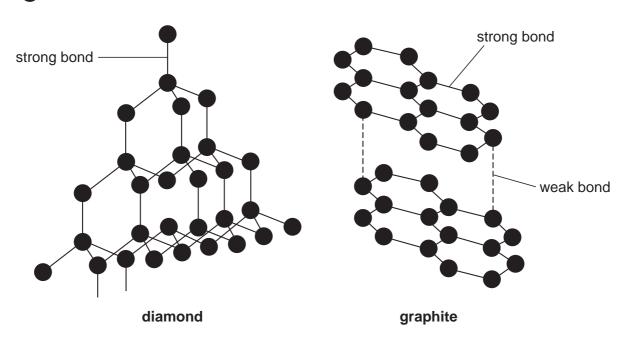
Section A - Module C4

1 Diamond and graphite have different properties and different uses.

Look at the table.

It shows some information about the properties of diamond and graphite.

property	diamond	graphite
state at room temperature	solid	solid
appearance at room temperature	colourless, clear and lustrous	dull black
melting point	very high	very high
hardness	very hard	soft
solubility in water	insoluble	insoluble
electrical conductivity	does not conduct	good conductor


(a) Diamond is used in jewellery.

This is because diamond is colourless, clear and lustrous.
Diamond is also used to make cutting tools.
Write about two properties of diamond that make it suitable for cutting tools.
Use the table to help you.

(b) Look at the structures of diamond and graphite.

(ii)

(i) Diamond and graphite both have very high melting points.

Explain why.	
Use ideas about their structure.	
	[1]
Graphite conducts electricity.	
Explain why.	
Use ideas about its structure.	

[Total: 4]

She	use	s the int	ernet	to find ou	t about f	ertilisers.					FERTILISER
	e find n gro		at amn	nonium ni	trate, NI	H ₄ NO ₃ , in	nproves	leaf and		a	mmonium nitrate NH ₄ NO ₃
(a)	Amı	monium	nitrate	e can be r	made by	reacting	an alka	li with an	acid.		
	(i)	What is	s the n	name of th	ne alkali	needed?					
											[1]
	(ii)	What is	s the n	name of th	ne acid n						
											[1]
(b)				hat potas							
	Pota	assium (chlorid	le can be	made by	y reacting	potass	ium carbo	onate wi	ith hydrod	chloric acid.
	Bala	ance the	syml	bol equat	ion for th	nis reactio	on.				
	K ₂ C	O ₃	+	HC <i>l</i>	\rightarrow	KCl	+	CO ₂	+	H ₂ O	[1]
(c)	Nat	alie mak	es so	me potas:	sium chl	oride.					
	She	uses 2	.76g d	of potassiu	ım carbo	onate.					
	She	predic	ts she	should m	nake 1.4	9g of pot	assium	chloride.			
	(i)	Natalie	actua	ally make	s 0.596	g of potas	ssium ch	nloride.			
		What is	s her p	ercentag	e yield?						
		percen	tage y	rield =			%				[2]
	(ii)	In anot	her ex	periment	, Natalie	uses les	s potas	sium carb	onate.		
		This tin	ne she	uses 1.3	88g of po	otassium	carbona	ate.			
		How m	uch po	otassium	chloride	does she	predic	t she will	make?		
		predict	ed ma	ss of pota	assium c	:hloride m	ade = .			g	[1]

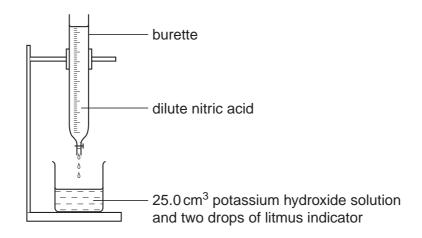
Natalie enjoys gardening.

(d)	Natalie also finds out that there are problems when farmers use too much fertiliser.
	One problem is called eutrophication .
	Write about eutrophication.
	Your answer should include
	how it happens
	the effect of eutrophication.
	[3]

[Total: 9]

Jac	k inve	estigates some reactions of dilute sulfuric acid.	
(a)	Jacl	adds some sodium hydroxide solution to dilute sulfuric acid.	
	Sod	ium hydroxide is an alkali.	
	The	pH value of the acid increases as the sodium hydroxide is added.	
	(i)	Explain why the pH value increases.	
			[1]
	(ii)	A salt is made when sodium hydroxide reacts with dilute sulfuric acid.	
		What is the name of this salt?	
			[1]
(b)	Jacl	c also uses the internet to investigate sulfuric acid, H ₂ SO ₄ .	
	He	finds out that dilute sulfuric acid contains ions.	
	One	e of these is the sulphate ion, SO_4^{2-} .	
	Writ	te down the name or formula of another ion found in dilute sulfuric acid.	
			[1]
			[Total: 3]

River	water sometimes contains dissolved salts, pollutants, microbes and insoluble materials.
River	water must be purified before it can be used as drinking water.
Water	purification involves filtration, sedimentation and then chlorination.
(a) C	hlorination kills microbes.
W	hat happens during the filtration stage of water purification?
	[1]
(b) E	ven after purification, the water obtained may still contain some poisonous pollutants.
S	uggest why.
	[1]
(c) S	ea water is a possible source of drinking water.
(i) Describe one way of getting drinking water from sea water.
	[1]
(ii	Using sea water to make large quantities of drinking water is expensive.
	Explain why.
	[1]
	[Total: 4]


Section B - Module C5

5 This question is about acid-base titrations.

Judy wants to find out the volume of dilute nitric acid needed to neutralise 25.0 cm³ of an alkali.

The alkali used is potassium hydroxide solution.

Look at the apparatus she uses.

She adds dilute nitric acid slowly until the litmus suddenly changes colour.

She repeats the experiment two more times.

Look at Judy's results table.

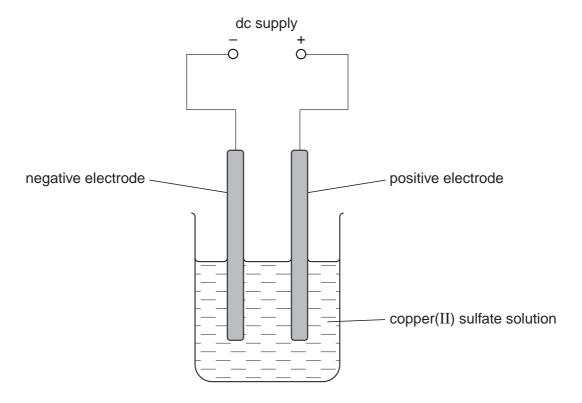
titration number	1	2	3
final burette reading in cm ³	29.7	27.0	34.8
initial burette reading in cm ³	8.5	6.9	14.9
volume of acid used (titre) in cm ³	21.2	20.1	19.9

(a)	It is important that the colour of the indicator changes suddenly.	
	Suggest why Judy cannot use universal indicator instead of litmus.	
		[1]
(b)	Judy decides to only use the second and third titration results.	
	Explain why.	
		[1]

(c)	Look at the	balanced	symbol	equation	for	the	reaction	between	potassium	hydroxide	and
	nitric acid.										

$$\mathrm{KOH} + \mathrm{HNO_3} \rightarrow \mathrm{KNO_3} + \mathrm{H_2O}$$

(i)	The concentration of the potassium hydroxide solution is 0.100 mol/dm ³ .	
	Calculate the number of moles in 25.0 cm ³ of the potassium hydroxide solution.	
	number of moles of potassium hydroxide =	[1]
(ii)	Use your answer to (i) to work out the number of moles of nitric acid that will reathe potassium hydroxide.	ct with
	number of moles of nitric acid =	[1]
(iii)	Calculate the concentration, in mol/dm ³ , of the dilute nitric acid.	
	Use the	
	average titre of titrations 2 and 3	
	answer to part (ii).	
	concentration of nitric acid =mol/dm ³	[2]
	тј	otal: 6]


Silicon dioxide and iron(III) hydroxide have been discovered on the planet Mars.

(a)	Silicon dioxide, SiO ₂ , has a molar mass of	of 60 g/mol.	
	Calculate the molar mass of iron(III) hyd	roxide, Fe(OH) ₃ .	
	The relative atomic mass (A_r) for H is 1,	for O is 16, for Si is 28 and for Fe is 56.	
	molar mass = g/m	ol	[1]
(b)	Compound X has been discovered on th	e planet Mars.	
	Compound X has the empirical formula 0	CH.	
	Which two formulae could be compound	X ?	
	Choose from the list.		
	CH ₄	C_2H_2	
	C ₂ H ₆	C ₄ H ₈	
	C_6H_6	C ₁₀ H ₂₂	
	answer	and	[2]
		тј	otal: 3]

7 Azhar does an electrolysis experiment.

He uses copper(II) sulfate solution.

Look at the apparatus he uses.

Azhar uses copper electrodes.

(a) Which two of the following observations are correct	(a)	Which two	of the following	observations are	correct?
---	-----	------------------	------------------	------------------	----------

Put a tick (✔) next to each of the **two** correct answers.

The positive electrode gets plated with copper.	
A colourless gas is made at the negative electrode.	
The blue colour of the electrolyte becomes colourless.	
The negative electrode gains mass.	
The positive electrode loses mass.	
	/TT

(b) Azhar decides to replace copper(II) sulfate solution with solid copper(II) sulfate.

Electrolysis does not happen.

Explain why.

[Total: 3] [Turn over

[2]

© OCR 2008

Sulfamic acid solution is used to remove limescale in kettles.

Lim	escale is m	ostly	calcium carbor	ate.						
Sulf	amic acid re	eacts	with calcium c	arbona	ate as shown	in the	equation.			
	sulfamic acid	+	calcium carbonate	\rightarrow	calcium sulfamate	+	carbon dioxide	+	water	
Rob	in investiga	ıtes sı	ulfamic acid so	lution.						
Loo	k at the dia	gram.								
			calcium carbo		owder to 100	carbor	nate powde		ution.	
			is still some ca		_	vdor l	off but the	fizzina	hae etoppo	4
				icium	carbonate por	wuei ii	en, but me	iizziiig	nas stoppet	J.
(a)	vviiy does	uie ie	eaction stop?							
										[1]
(b)	Describe a	ın exp	eriment to me	asure t						
()			am will help yo							
	7 labelled		ani wiii neip ye	u unov						
										[2]
© OCR 200	08									

(c)	In an experiment, 0.030 mol of carbon dioxide is made.								
	What is the volume, measured at room temperature and pressure, of this amount of carbon dioxide?								
	One mole of any gas occupies 24 dm ³ at room temperature and pressure.								
	volume of carbon dioxide = dm^3 [1]								
	[Total: 4]								
Sul	Ifuric acid is made in the Contact Process.								
Loc	ok at the symbol equation. It describes one reaction that happens in the Contact Process.								
	$2SO_2 + O_2 \rightleftharpoons 2SO_3$								
The	e conditions used for this reaction are								
	 a temperature of 450 °C atmospheric pressure a V₂O₅ catalyst. 								
Ex	plain the three conditions used in this reaction.								
Us	e ideas about								
	rate of reactionposition of equilibrium.								
ten	nperature of 450°C								
atn	nospheric pressure								
V ₂ (O ₅ catalyst								

[Total: 4] [Turn over

9

Section C - Module C6

	10	This	question	is	about fue	l cells.
--	----	------	----------	----	-----------	----------

Fuel cells use hydrogen and oxygen.

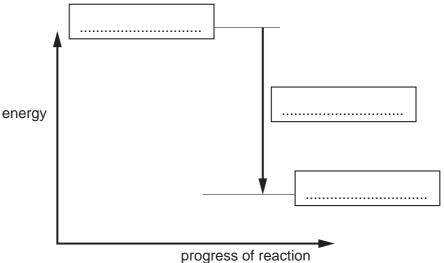
Fuel cells make water and release energy.

(a)	Write a wor	d equation	for the	reaction in	a hvdro	aen-oxvaer	fuel	cell
•	~,		- 090000			a, a. c	90 0/., 90.		

(b) Fuel cells are used in spacecraft.

Write down one advantage of using fuel cells rather than batteries in spacecraft.

.....[1]


(c) Look at the energy level diagram for the reaction taking place in a fuel cell.

Label the diagram.

Choose words from the list.

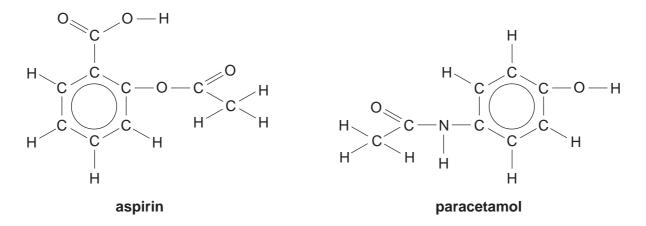
catalyst energy change product

reactants

(d) What is the name given to all reactions that give out heat?

[Total: 6]

[3]


This	s question is about rusting.
(a)	One way to stop iron rusting is to paint it.
	Why does painting stop the iron from going rusty?
	[1]
(b)	The rusting of iron involves both oxidation and reduction .
	What is the name of this type of process?
	Choose from the list.
	displacement
	fermentation
	oxred
	redox
	answer[1]
(c)	Two other ways of preventing rusting are galvanising and tinning.
	Explain why galvanising works better than tinning.
	In your answer include
	how tinning works
	how galvanising works.
	[3]
	[Total: 5]

16 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

This	s que	estion is about oils and soap.	
(a)	Veg	getable oil is heated with sodium hydroxide solution.	
	Soa	ap and glycerol are made.	
	(i)	Write a word equation for this reaction.	
			[1]
	(ii)	What is the name for this process?	
		Choose from the list.	
		distillation	
		fermentation	
		saponification	
		saturation	
		answer	[1]
(b)	Cor	mplete the sentence.	
	Cho	oose a word from the list.	
		dissolved	
		immiscible	
		saturated	
		soluble	
	Oil	and water are liquids which do not mix.	
	The	ey are said to be	[1]
(c)	Mai	rgarine is made from vegetable oil.	
	Des	scribe how margarine is manufactured from vegetable oil.	
			[1]
		ı	Total: 41

- 13 This question is about analgesics (pain killers).
 - (a) Look at the displayed formulas of aspirin and paracetamol.

(i) Put numbers into the boxes to complete the molecular formula for **aspirin**.

С	Н	0		[1]

(ii)	Write down one similarity in the displayed formulas of aspirin and paracetamol.
	[1]
/iii\	Write down one difference between the displayed formulas of aspirin and paracetamol

.....[1]

(b) Many people use **soluble** aspirin.

(i)	Write down	one	advantage	that	soluble	aspirin	has	compared	to a	an insoluble	aspirir
	tablet.										

.....[1]

(ii) What change is made to the structure of aspirin to make it soluble?

You may use the diagram to help you.

	TA.
 	 [1

[Total: 5]

END OF QUESTION PAPER

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

0	4 He	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	t fully
7		19 F fluorine 9	35.5 Cl chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but no
9		16 0 0 0 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	re been repo
2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	rs 112-116 hav authenticated
4		12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82	mic numbers au
က		11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 TI thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
	'			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elemer
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium 111
				59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78	[271] Ds damstadtlum 110
				59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt meitnerium 109
	1 H hydrogen 1			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
,				55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
		mass ool number		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	Sg seaborgium 106
	Key	Key relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262]
		relati atc atomic		48 Ti titanium 22	91 Zr	178 Hf hafnium 72	[261] Rf rutherfordium 104
	·			45 Sc scandium 21	89 Y yttrium 39	139 La* lanthanum 57	[227] Ac* actinium 89
2		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
-		7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.