Н #### B642/02 # GENERAL CERTIFICATE OF SECONDARY EDUCATION GATEWAY SCIENCE # CHEMISTRY B Unit 2 Modules C4 C5 C6 (Higher Tier) #### **FRIDAY 25 JANUARY 2008** Morning Time: 1 hour Candidates answer on the question paper. Additional materials (enclosed): None Calculators may be used. Additional materials: Pencil Ruler (cm/mm) | Candidate
Forename | | | Candidate
Surname | | | | |-----------------------|--|--|----------------------|--|--|--| | Centre
Number | | | Candidate
Number | | | | #### **INSTRUCTIONS TO CANDIDATES** - Write your name in capital letters, your Centre Number and Candidate Number in the boxes above. - Use blue or black ink. Pencil may be used for graphs and diagrams only. - Read each question carefully and make sure that you know what you have to do before starting your answer. - Answer all the questions. - Do **not** write in the bar codes. - Do not write outside the box bordering each page. - Write your answer to each question in the space provided. #### **INFORMATION FOR CANDIDATES** - The number of marks for each question is given in brackets [] at the end of each question or part question. - The total number of marks for this paper is 60. - The Periodic Table is printed on the back page. | FOR EXAMINER'S USE | | | | | | | |--------------------|------|------|--|--|--|--| | Section | Max. | Mark | | | | | | A | 20 | | | | | | | В | 20 | | | | | | | С | 20 | | | | | | | TOTAL | 60 | | | | | | | This document consists of 21 printed pages and 3 | blank | pades | |--|-------|-------| |--|-------|-------| SPA (MML 15458 1/07) T45724/4 © OCR 2008 [K/103/4265] OCR is an exempt Charity [Turn over # Answer **all** the questions. # Section A – Module C4 | Am | nmonium sulfate and ammonium nitrate are both fertilisers. | | | | | | | | | |-----|--|-----|--|--|--|--|--|--|--| | Am | mmonium sulfate has the formula $(NH_4)_2SO_4$. | | | | | | | | | | Am | nmonium nitrate has the formula NH ₄ NO ₃ . | | | | | | | | | | (a) | What is the total number of atoms shown in the formula $(NH_4)_2SO_4$? | | | | | | | | | | | | [1] | | | | | | | | | (b) | Ammonium nitrate has a relative formula mass $(M_{\rm r})$ of 80. | | | | | | | | | | | What is the relative formula mass of ammonium sulfate? | | | | | | | | | | | The relative atomic mass of H is 1, of N is 14, of O is 16, and of S is 32. | relative formula mass = | [1] | | | | | | | | | | Ammonium nitrate contains 35% by mass of nitrogen. | | | | | | | | | | | What is the percentage by mass of nitrogen in ammonium sulfate? | percentage by mass = | [1] | | | | | | | | | (c) | Ammonium sulfate dissolves in water. | | | | | | | | | | | Why is it important that a fertiliser dissolves in water? | [1] | | | | | | | | 1 (d) Clare makes ammonium nitrate. Look at the apparatus she uses. She uses 25.0 cm³ of an alkali called ammonia. She slowly adds an acid until the alkali is just neutralised. (i) What is the name of the acid she must use? Choose from the list. #### hydrochloric acid #### nitric acid ### phosphoric acid #### sulfuric acid | | answer[1] | |------|--| | (ii) | The pH value in the beaker changes as the acid is added. | | | Describe how the pH value changes. | | | | | | Explain why. | | | | | | | | | 101 | | (iii) | Clare makes 0.45 g of ammonium nitrate. | |-------|---| | | She predicts she should make 0.50 g. | | | What is her percentage yield? | | | | | | | | | | | | percentage yield = % [2] | [Total: 9] 2 | This | s question is about the manufacture of chemicals. | | |------|--|-----| | (a) | Many millions of tonnes of ammonia are manufactured each year in the United Kingdom. | | | | Ammonia is made by the reaction of nitrogen and hydrogen in a continuous process. | | | | The conditions used for this reaction are | | | | • 450°C | | | | high pressure | | | | • iron catalyst. | | | | Explain why these conditions are chosen. | | | | Use ideas about rate of reaction and percentage yield in your answer. | [3] | | (b) | A new anti-cancer drug is made from a rare plant only found in South America. | | | | Less than 100 kg of the drug is made each year. | | | | It is made in a batch process. | | | | The cost of manufacturing and developing the drug is very high. | | | | Write about some of the reasons why this cost is very high. | | | | | | | | | | | | | [2] | | (c) | The anti-cancer drug is made in a batch process rather than a continuous one. | | | | Suggest one reason why. | | | | | | | | | [1] | © OCR 2008 [Turn over [Total: 6] | 3 | Washing | un | liquide | contain | а | detergent. | |---|------------|----|---------|---------|---|------------| | J | vvasiiiiiq | up | IIQUIUS | COntain | а | ueteruent. | Washing up liquid will clean plates covered in fat. (a) Look at the diagram of a detergent molecule. Label the diagram to show - the hydrophilic part of the molecule - the hydrophobic part of the molecule. [1] (b) Detergent molecules help to remove fat from a dirty plate. Explain how. A labelled diagram will help you to answer this question. |
 |
 | | |------|------|--| | | | | |
 |
 | | | | | | | | | | |
 |
 | | | | | | | | | | [Total: 3] - 4 This question is about fullerenes and nanotubes. - (a) Look at the diagram of a fullerene. It is called buckminster fullerene. What is the chemical formula of buckminster fullerene? | | | [1] | |-----|---|-------| | (b) | Fullerenes can be joined together to make nanotubes. | | | | Nanotubes are used to make very effective industrial catalysts. | | | | Give one reason why. | | | | | [1] | | | [Tota | l: 2] | PLEASE DO NOT WRITE ON THIS PAGE #### Section B - Module C5 **5** Hannah investigates the electrolysis of aqueous potassium sulfate. Look at the apparatus she uses. (a) There are bubbles of gas made at both electrodes. What are the names of the two gases made during this electrolysis? Choose from the list. #### carbon dioxide hydrogen nitrogen oxygen #### sulfur dioxide | | | and | | |-----|--|----------------------------|------------------------| | (b) | Write down two factors that affect the aris electrolysed. | nount of gas made when aqu | eous potassium sulfate | | | 1 | | | | | 2 | | [2] | [Total: 4] - 6 Monty investigates the properties of two acids - dilute ethanoic acid, CH₃COOH - dilute hydrochloric acid, HCl. - (a) Monty adds a small piece of magnesium ribbon to dilute ethanoic acid. Monty sees bubbles of a gas. At the end of the reaction a colourless solution is left. The colourless solution contains magnesium ethanoate, Mg(CH₃COO)₂. Write down the balanced **symbol** equation for the reaction between magnesium and ethanoic acid.[2 **(b)** Monty investigates the reaction of both acids with a lump of calcium carbonate. He wants to find out the volume of gas made every 10 seconds. Look at the apparatus he uses. He does two experiments, one with dilute ethanoic acid and one with dilute hydrochloric acid. He makes sure he does a fair test. Look at the graph of his results. (i) The reaction between calcium carbonate and ethanoic acid is still happening after 80 seconds. What will be the total volume of gas collected at the **end** of this reaction? (ii) Dilute hydrochloric acid reacts much faster than dilute ethanoic acid. Explain why. Use ideas about - hydrogen ions - collisions between particles. [Total: 6] 7 This question is about equilibrium and reversible reactions. Ethene reacts with steam in a reversible reaction to make ethanol. $$C_2H_4 + H_2O \rightleftharpoons C_2H_5OH$$ This reversible reaction can reach equilibrium if it is in a sealed container. (a) At equilibrium there is a connection between the rate of the forward reaction and the rate of the backward reaction. What is this connection? | | | - | |----|----|---| | l- | -1 | | | | | | | | | | (b) What happens to the concentration of ethene and of water at equilibrium?[1] (c) Look at the table. It shows how the percentage of ethene at equilibrium changes as the **temperature** changes and as the **pressure** changes. | | temperature | | | | | | |----------------|-------------|-------|-------|--|--|--| | pressure | 200°C | 260°C | 320°C | | | | | 30 atmospheres | 37% | 26% | 21% | | | | | 40 atmospheres | 40% | 30% | 25% | | | | | 50 atmospheres | 44% | 35% | 30% | | | | | 60 atmospheres | 48% | 40% | 34% | | | | | What | happe | ens to | the | percer | ntage | of | ethene | as | the | pressure | increases | but the | temperat | ure | |-------|--------|--------|-----|--------|-------|----|--------|----|-----|----------|-----------|---------|----------|-----| | stays | the sa | ıme? | (d) | Calculate the maximum mass of ethanol that can be made from 5.6 tonnes of ethen | e. | |-----|---|------------| | | The relative atomic mass for H is 1, for C is 12 and for O is 16. | maximum mass of ethanol = | [3] | | | | [Total: 6] | | Zoe | e tests copper(II) sulfate solution. | |-----|--| | (a) | Zoe adds barium chloride solution to copper(II) sulfate solution. | | | A white precipitate appears. | | | Write down the word equation for this reaction. | | | [1] | | (b) | Zoe adds sodium hydroxide solution to copper(II) sulfate solution. | | | This time she gets a blue precipitate of copper(II) hydroxide, $\mathrm{Cu(OH)}_2$. | | | Write down the ionic equation for the reaction between aqueous Cu ²⁺ and aqueous OH ⁻ . | | | Include state symbols. | | | [3] | | | [Total: 4] | #### Section C - Module C6 | 9 | This question is about the hardness of water | |---|--| | | | (a) Look at the list. # calcium hydrogencarbonate calcium sulfate ethanoic acid #### sodium chloride # sodium hydroxide | | | • | |-----|------------|---| | | (i) | Write the name of a substance that causes permanent hardness. | | | | Choose from the list. | | | | answer[1] | | | (ii) | Write the name of a substance that causes temporary hardness. | | | | Choose from the list. | | | | answer[1] | | (b) | Cal
hyd | cium carbonate, $CaCO_3$, reacts with water and carbon dioxide to make calcium rogencarbonate, $Ca(HCO_3)_2$. | | | Wri | te a balanced symbol equation for this reaction. | | | | [1] | | (c) | Ion | exchange resins can be used to soften water. | | | Exp | lain how ion exchange resins soften water. | | | | | | | | | | | | | | | | [2] | | | | [Total: 5] | **10** This question is about sodium chloride. Brine is a solution of sodium chloride. Solution mining is used to get brine out of the ground. Look at the diagram of solution mining. | (a) | Write about one major environmental problem caused by solution mining. | | |-----|--|-----| | | | [1] | # (b) Look at the diagram. It shows the apparatus used for the electrolysis of sodium chloride solution (brine). Chlorine, hydrogen and sodium hydroxide are made. | (1) | Hydrogen ions, H ⁺ , react to make hydrogen gas, H ₂ . | | |-------|--|-----| | | Write an equation for this reaction. | | | | Use e ⁻ to show an electron. | | | | | [1] | | (ii) | Chloride ions, Cl^- , react to form chlorine gas. | | | | Write an equation for this reaction. | | | | Use e ⁻ to show an electron. | | | | | [1] | | (iii) | Sodium hydroxide is also made in this electrolysis. | | | | Explain why. | | | | | | [Total: 4] | | | 18 | |----|------|---| | 11 | Etha | anol is made by the fermentation of glucose. | | | Car | bon dioxide is also made in the process. | | | (a) | Complete the word equation for fermentation. | | | | glucose \rightarrow | | | (b) | Fermentation makes a dilute solution of ethanol. | | | | What method of separation could be used to get almost pure ethanol? | | | | Choose from the list. | | | | crystallisation | | | | electrolysis | | | | evaporation | | | | filtration | | | | fractional distillation | | | | answer[1] | | | (c) | A fermentation reaction takes place at 40 °C. | | | | When the temperature is raised to 80 °C, fermentation stops. | | | | Explain why. | | | | | | | | [1] | | | | | (d) Look at the displayed formula for methanol, ${\rm CH_3OH.}$ Draw the displayed formula of ethanol, $\mathrm{C_2H_5OH.}$ (e) Look at this table. It shows the formulae of some alcohols. | alcohol | formula | |----------|----------------------------------| | methanol | CH₃OH | | ethanol | C ₂ H ₅ OH | | propanol | | | butanol | C ₄ H ₉ OH | | (i) | Complete the table by writing the formula for propanol. | [1] | |------|--|--------| | (ii) | The general formula for an alkene is C _n H _{2n} . | | | | Write down the general formula for an alcohol . | | | | | [1] | | | [Tot | al: 6] | | This | s question is about fats and oils. | | |------|---|-------| | (a) | In a saturated fat all the bonds between carbon atoms are single bonds. | | | | How is an unsaturated fat different? | | | | | [1] | | (b) | Describe a chemical test for unsaturation in a fat. | | | | test | [1] | | | result | [1] | | (c) | Fats and oils can be heated with sodium hydroxide to make soap. | | | | Look at the list. | | | | displacement | | | | neutralisation | | | | oxidation | | | | reduction | | | | saponification | | | | Put a (ring) around the word that best describes the process. | [1] | | (d) | How is margarine manufactured from vegetable oils? | | | | | [1] | | | [Total | l: 5] | # **END OF QUESTION PAPER** 12 # 21 BLANK PAGE PLEASE DO NOT WRITE ON THIS PAGE # 22 BLANK PAGE PLEASE DO NOT WRITE ON THIS PAGE #### PLEASE DO NOT WRITE ON THIS PAGE Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. # The Periodic Table of the Elements | 0 | 4 He hetium 2 | 20
Ne
neon
10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | t fully | |--------------|-------------------------|---|---------------------------------|------------------------------------|-----------------------------------|--------------------------------------|--| | _ | | 19
F
fluorine
9 | 35.5
Cl
chlorine
17 | 80
Br
bromine
35 | 127
 | [210] At astatine 85 | orted but no | | 9 | | 16
0
0xygen
8 | 32
S
sulfur
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po potentium 84 | ve been repo | | 2 | | 14
N
nitrogen
7 | 31
P
phosphorus
15 | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209
Bi
bismuth
83 | s 112-116 hav
authenticated | | 4 | | 12
C
carbon
6 | 28
Si
silicon | 73
Ge
germanium
32 | 119
Sn
tin
50 | 207
Pb
tead
82 | Elements with atomic numbers 112-116 have been reported but not fully
authenticated | | m | | 11
B
boron
5 | 27
Al
aluminium
13 | 70
Ga
gallium
31 | 115
In
indium
49 | 204
T1
thallium
81 | nts with ato | | | · | | | 65
Zn
zinc
30 | 112
Cd
cadmium
48 | 201
Hg
mercury
80 | Eleme | | | | | | 63.5
Cu
copper
29 | 108
Ag
silver
47 | 197
Au
gold
79 | Rg
roentgenium
111 | | | | | | 59
Ni
nickel
28 | 106
Pd
palladium
46 | 195
Pt
platinum
78 | Ds
darmstadtium
110 | | | | | | 59
Co
cobalt
27 | 103
Rh
rhodium
45 | 192
 Ir
 iridium
 77 | [268]
Mt
meitnerium
109 | | | 1
H
hydrogen
1 | | | 56
Fe
iron
26 | 101
Ru
ruthenium
44 | 190
Os
osmium
76 | [277]
Hs
hassium
108 | | | | | | 55
Mn
manganese
25 | [98] Tc technetium 43 | 186
Re
rhenium
75 | [264] Bh bohrium 107 | | | | mass
ol
number | | 52
Cr
chromium
24 | 96
Mo
motybdenum
42 | 184
W
tungsten
74 | Sg
seaborgium
106 | | | Key | relative atomic mass
atomic symbol
name
atomic (proton) number | (proton) r | 51
V
vanadium
23 | 93
Nb
niobium
41 | 181
Ta
tantalum
73 | [262] Db dubnium 105 | | | | relativ
ato
atomic | | 48
Ti
titanium
22 | 91
Zr
zirconium
40 | 178
Hf
hafinium
72 | Rf
rutherfordium
104 | | | ' | | | 45
Sc
scandium
21 | 89
Y
yttrium
39 | 139
La*
tanthanum
57 | [227]
Ac*
actinium
89 | | 7 | | 9
Be
beryllium
4 | 24
Mg
magnesium
12 | 40
Ca
calcium
20 | 88
Sr
strontium
38 | 137
Ba
barium
56 | [226]
Ra
radium
88 | | - | | 7
Li
^{Utthium}
3 | 23
Na
sodium
11 | 39
K
potassium
19 | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | [223]
Fr
francium
87 | * The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.