

# GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE

# A322/01

**CHEMISTRY A** 

UNIT 2 – Modules C4 C5 C6 (Foundation Tier)

## SAMPLE ASSESSMENT MATERIALS

(from 2010 onwards)

Candidates answer on the question paper Additional materials (enclosed):

Calculators may be used.

Additional materials: Pencil

Ruler (cm/mm)

Time: 40 minutes

| Candidate<br>Forename | Candidate<br>Surname |  |
|-----------------------|----------------------|--|
| Centre<br>Number      | Candidate<br>Number  |  |

#### **INSTRUCTIONS TO CANDIDATES**

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Do not write outside the box bordering each page.
- Write your answer to each question in the space provided.

#### INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [ ] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

| FOR E | XAMINI<br>USE | ER'S |
|-------|---------------|------|
| Qu.   | Max.          | Mark |
| 1     | 6             |      |
| 2     | 9             |      |
| 3     | 5             |      |
| 4     | 5             |      |
| 5     | 5             |      |
| 6     | 6             |      |
| 7     | 6             |      |
| TOTAL | 42            |      |

This document consists of 16 printed pages.

SP (MML 15405 1/07)/ T435447

© OCR 2008 [Y/103/3791]

OCR is an exempt Charity

Turn over

#### Answer all the questions.

1 Elements in Group 7 are called the halogens. The table gives some information about the physical properties of three of the halogens.

| halogen  | proton<br>number | melting point in °C | boiling point<br>in °C | state<br>at 25 °C | colour     |
|----------|------------------|---------------------|------------------------|-------------------|------------|
| chlorine | 17               | -101                | -35                    |                   | pale green |
| bromine  | 35               | -7                  | 59                     | liquid            | deep red   |
| iodine   | 53               | 114                 | 184                    | solid             | dark grey  |

|  | (a) | The halogens | show trends | in physical | properties w | ith increasing | proton number |
|--|-----|--------------|-------------|-------------|--------------|----------------|---------------|
|--|-----|--------------|-------------|-------------|--------------|----------------|---------------|

Use information from the table to help you answer these questions.

(i) Finish the sentence about the trend in melting point.

As the proton number ...... the melting point ...... [1]

(ii) What is the state of chlorine at 25 °C?

Put a (ring) around the correct answer.

gas liquid solid

[1]

(iii) Astatine is a halogen. The proton number of astatine is 85.

The halogens get darker in colour as the proton number increases.

Predict the colour of astatine.

Put a (ring) around the correct answer.

yellow orange black

[1]

**(b)** The halogens also show a trend in reactivity.

This can be shown by the displacement reactions when halogens are added to solutions of halides.

A student made the following observations.

- When chlorine is added to potassium bromide solution, red bromine appears.
- When bromine is added to potassium iodide solution, brown iodine appears.
- When bromine is added to potassium chloride solution, there is no displacement.

(i) What is the correct order of reactivity for these halogens? Put a tick ( $\checkmark$ ) in the box next to the correct answer. decreasing reactivity bromine chlorine chlorine bromine iodine bromine [1] (ii) Fluorine is a halogen with proton number 9. Which statement describes the displacement reactions of fluorine? Put a tick (✓) in the box next to the correct answer. Fluorine displaces chlorine, bromine and iodine. Fluorine displaces iodine but not chlorine or bromine. Fluorine displaces chlorine and bromine but not iodine. Fluorine displaces bromine and iodine but not chlorine. [1] (c) Hazard symbols are used to show the dangers involved in handling some chemicals. В C lodine is harmful. Which hazard symbol, A, B, C or D, should be placed on a container of

iodine? is **narmful**. Which hazard symbol, **A**, **B**, **C** or **D**, should be placed on a container of

answer ......[1]

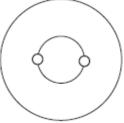
Total [6]

2 This diagram shows part of the Periodic Table.

|    |    |  |   |  |    | He |
|----|----|--|---|--|----|----|
| Li | Be |  | O |  |    | Ne |
| Na | Mg |  |   |  | Cl | Ar |
| K  | Ca |  |   |  | Br |    |

(a) (i) Which three elements shown in the diagram are in the same group?Put a tick (✓) in the box next to the correct answer.

| Ве | С  | He |  |
|----|----|----|--|
| Na | Mg | Ar |  |
| He | Ве | Ar |  |
| Li | Na | K  |  |


(ii) Which three elements shown in the diagram are in the same period?Put a tick (✓) in the box next to the correct answer.

| Na | Mg | Ar |  |
|----|----|----|--|
| Li | Na | Ca |  |
| He | Ne | Ar |  |
| Na | Ca | Br |  |

[1]

[1]

| (b) | A small piece of potassium is dropped into a trough of cold water.                                |
|-----|---------------------------------------------------------------------------------------------------|
|     | Describe what you would <b>see</b> as the potassium reacts.                                       |
|     |                                                                                                   |
|     |                                                                                                   |
|     |                                                                                                   |
|     |                                                                                                   |
|     |                                                                                                   |
|     |                                                                                                   |
|     |                                                                                                   |
|     | [4]                                                                                               |
| (c) | Finish the diagram to show the arrangement of electrons in an atom of the element <b>carbon</b> . |
|     | Use a circle O to show the position of each electron.                                             |
|     | The positions of two electrons have already been drawn to help you.                               |
|     |                                                                                                   |
|     |                                                                                                   |



[1]

(d) The table shows the arrangement of electrons in sodium atoms and chlorine atoms.Complete the table to show the arrangement of electrons in sodium ions and chloride

| sodium atom | sodium ion      | chlorine atom | chloride ion |
|-------------|-----------------|---------------|--------------|
| Na          | Na <sup>+</sup> | C1            | C <i>l</i> - |
| 2.8.1       |                 | 2.8.7         |              |

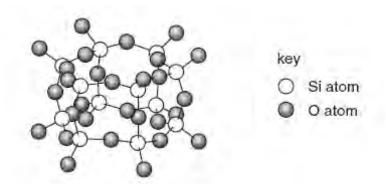
[2]

Total [9]

3 The table gives information about ions dissolved in sea water.

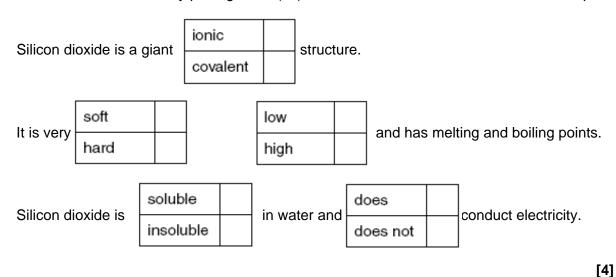
| ion       | symbol                        | percentage by mass of the total dissolved solids (%) |
|-----------|-------------------------------|------------------------------------------------------|
| chloride  | C1-                           | 55                                                   |
| sodium    | Na <sup>+</sup>               | 30                                                   |
| sulfate   | SO <sub>4</sub> <sup>2-</sup> | 8                                                    |
| magnesium | Mg <sup>2+</sup>              | 4                                                    |
| calcium   | Ca <sup>2+</sup>              | 1                                                    |
| potassium | K+                            | 1                                                    |
| carbonate | CO <sub>3</sub> 2-            | 0.5                                                  |
| bromide   | Br <sup>-</sup>               | 0.2                                                  |

These ions enter the sea water when crystals of ionic compounds in rocks dissolve.


Each of these ionic compounds is made up of one type of positive ion and one type of negative ion shown in the table.

| (a) | One compound that dissolved from the rocks in              | to the water is magnesium sulfate.       |     |
|-----|------------------------------------------------------------|------------------------------------------|-----|
|     | Suggest the name of one <b>other</b> ionic compound water. | d that dissolved from the rocks into the |     |
|     | Use information from the table to help you.                |                                          |     |
|     |                                                            |                                          | [1] |
| (b) | What holds together the ions in the crystals of i          | onic compounds?                          |     |
|     | Put a tick ( ) in the box next to the correct ans          | swer.                                    |     |
|     | sharing of pairs of electrons                              |                                          |     |
|     | attraction between ions of opposite charge                 |                                          |     |
|     | attraction between ions of the same charge                 |                                          |     |

[1]


| (c) | Sea water conducts electricity.                                                                                           |
|-----|---------------------------------------------------------------------------------------------------------------------------|
|     | Use ideas about ions to explain why this happens.                                                                         |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     | [2]                                                                                                                       |
| (d) | When a sample of sea water is evaporated to dryness, a white solid is left. This is a mixture of several ionic compounds. |
|     | Look at the percentage by mass of the total dissolved solids column in the table.                                         |
|     | Use the information to name the ionic compound that makes up <b>most</b> of the white solid.                              |
|     | [1]                                                                                                                       |
|     | [Total: 5]                                                                                                                |

- 4 All of the materials in the world are made up of elements.
  - (a) Much of the elements oxygen and silicon are in the compound silicon dioxide.



Here are some sentences about silicon dioxide.

Finish these sentences by putting a tick (✓) in the box next to the correct word in each pair.



(b) The compounds in living organisms are made mainly of four elements. Two of these elements are carbon and hydrogen.

Which are the other **two** elements?

Put a (ring) around each of the two correct answers.

calcium nitrogen oxygen sodium

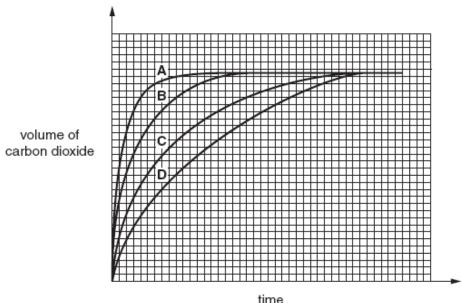
[1]

[Total: 5]

| 5 | The | ore haematite contains<br>iron oxide +      | s iron oxide. Iron is<br>- carbon → iron |                          | •                        | carbon.    |  |  |  |  |
|---|-----|---------------------------------------------|------------------------------------------|--------------------------|--------------------------|------------|--|--|--|--|
|   | (a) | Oxidation and reduction                     | on take place in this                    | reaction.                |                          |            |  |  |  |  |
|   |     | What is the name of the                     | e substance that h                       | as been <b>oxidise</b> d | !?                       |            |  |  |  |  |
|   |     |                                             |                                          |                          |                          | [1]        |  |  |  |  |
|   | (b) | Which <b>two</b> of the meta                |                                          | •                        | on with carbon?          |            |  |  |  |  |
|   |     | Put a (ring) around each                    |                                          |                          |                          |            |  |  |  |  |
|   |     | copper                                      | potassium                                | sodium                   | zinc                     | [2]        |  |  |  |  |
|   | (c) | The ore bauxite contains aluminium oxide.   |                                          |                          |                          |            |  |  |  |  |
|   |     | Carbon is not used to                       | extract aluminium f                      | rom this ore.            |                          |            |  |  |  |  |
|   |     | Explain why carbon is aluminium from bauxit |                                          | from haematite l         | out is not used to extra | ct         |  |  |  |  |
|   |     |                                             |                                          |                          |                          |            |  |  |  |  |
|   |     |                                             |                                          |                          |                          |            |  |  |  |  |
|   |     |                                             |                                          |                          |                          |            |  |  |  |  |
|   |     |                                             |                                          |                          |                          | [2]        |  |  |  |  |
|   |     |                                             |                                          |                          |                          | [Total: 5] |  |  |  |  |

| 6 | An a | acid and an alkali rea                | ct to form a      | salt and wa  | ater.                |                                |
|---|------|---------------------------------------|-------------------|--------------|----------------------|--------------------------------|
|   |      |                                       | acid +            | alkali —▶ s  | salt + water         |                                |
|   | (a)  | What type of reactio                  | n is this?        |              |                      |                                |
|   |      | Put a round the                       | e correct ar      | nswer.       |                      |                                |
|   |      | decomposition                         | neutra            | alisation    | oxidation            | polymerisation                 |
|   |      |                                       |                   |              |                      | [1]                            |
|   | (b)  | You are given a so unknown concentrat |                   | alkali of k  | nown concentratio    | n and a solution of an acid of |
|   |      | Briefly describe how the acid.        | you would         | carry out a  | titration accurately | to find the concentration of   |
|   |      |                                       |                   |              |                      |                                |
|   |      |                                       |                   |              |                      |                                |
|   |      |                                       |                   |              |                      |                                |
|   |      |                                       |                   |              |                      |                                |
|   |      |                                       |                   |              |                      |                                |
|   |      |                                       |                   |              |                      |                                |
|   |      |                                       |                   |              |                      |                                |
|   |      |                                       |                   |              |                      | [4]                            |
|   | (c)  | Acids also react with                 | n metals.         |              |                      |                                |
|   |      |                                       | acid +            | metal →      | salt + hydrogen      |                                |
|   |      | A piece of zinc is ad                 | lded to 20 c      | m³ of dilute | hydrochloric acid.   |                                |
|   |      | Bubbles of hydroger                   | n gas appea       | ar.          |                      |                                |
|   |      | What is the formula                   | of <b>hydroge</b> | en gas?      |                      |                                |
|   |      | Put a ring around the                 | e correct ar      | nswer.       |                      |                                |
|   |      |                                       | Н                 | 2H           | H <sub>2</sub>       |                                |
|   |      |                                       |                   |              |                      | [1]                            |
|   |      |                                       |                   |              |                      | [Total: 6]                     |

#### **BLANK PAGE**


Question 7 starts on page 12

PLEASE DO NOT WRITE ON THIS PAGE

| 7 | Ma  | gnes  | ium su          | Ifate is         | one of the ch                  | nemicals in det    | ergent   | powder.              |          |                |               |
|---|-----|-------|-----------------|------------------|--------------------------------|--------------------|----------|----------------------|----------|----------------|---------------|
|   | Ma  | ry ma | akes so         | ome ma           | agnesium sul                   | fate using this    | reactio  | n.                   |          |                |               |
|   | ma  | gnes  | ium ca          | rbonate          | e + sulfuric ad                | cid <b>→</b> magne | sium sı  | ulfate + w           | ater +   | carbon dioxid  | de            |
|   |     | Mg    | CO <sub>3</sub> | +                | H <sub>2</sub> SO <sub>4</sub> | MgSO <sub>4</sub>  | +        | $H_2O$               | +        | $CO_2$         |               |
|   |     |       |                 | out 10<br>appear |                                | ite sulfuric acid  | d and a  | dds solid            | magn     | esium carbo    | nate until no |
|   | (a) | Sor   | ne soli         | d magr           | nesium carbo                   | nate is left in t  | he solu  | tion.                |          |                |               |
|   |     | Wh    | at tech         | nique d          | can Mary use                   | to remove the      | solid f  | rom the s            | olution  | ?              |               |
|   |     |       |                 |                  |                                |                    |          |                      |          |                | [1]           |
|   | (b) | Ma    | ry work         | ks out tl        | he theoretica                  | I yield to be 12   | .0 g.    |                      |          |                |               |
|   |     | (i)   |                 |                  | s calculation sium sulfate.    | Mary uses the      | relative | e formula            | mass     | of magnesiu    | m carbonate   |
|   |     |       | She u           | uses the         | ese relative a                 | tomic masses       | : C = 12 | 2; Mg = 24           | 4; O =   | 16; S = 32.    |               |
|   |     |       | Use t           | his info         | rmation to we                  | ork out these r    | elative  | formula n            | nasses   |                |               |
|   |     |       | relativ         | _                |                                |                    |          |                      |          |                |               |
|   |     |       | Totali          | VO 101111        | idia mado on i                 | nagnoolam oa       | ibonate  | ,, mgcc <sub>3</sub> |          |                |               |
|   |     |       | relativ         | ve form          | ula mass of r                  | magnesium su       | lfate, M | gSO₄ =               |          |                |               |
|   |     |       |                 |                  |                                | Ü                  | •        |                      |          |                | [2]           |
|   |     | (ii)  | The t           | heoreti          | cal yield for N                | /lary's experim    | ent is 1 | 2.0 g.               |          |                |               |
|   |     |       | Mary            | dries a          | and weighs th                  | e magnesium        | sulfate  | she make             | es. This | s is her actua | al yield.     |
|   |     |       | Actua           | al yield         | = 10.8 g.                      |                    |          |                      |          |                |               |
|   |     |       | Work            | out the          | e percentage                   | yield for Mary'    | s expei  | riment.              |          |                |               |
|   |     |       |                 |                  |                                | Pei                | centag   | e yield =            |          |                | [1]           |
|   |     |       |                 |                  |                                |                    |          |                      |          |                |               |

**(c)** Mary investigates the rate of this reaction using the same sulfuric acid solution with different sized lumps of magnesium carbonate.

She measures the volume of carbon dioxide given off at time intervals and plots her results on a grid.



(i) How do these graphs show that Mary used the same mass of magnesium carbonate for each experiment?

Put a tick (✓) in the box next to the correct answer.

| Each line is a curve.                  |  |
|----------------------------------------|--|
| Each line begins at the origin.        |  |
| Each line finishes at the same time.   |  |
| Each line finishes at the same volume. |  |

[1]

(ii) Which line, A, B, C or D, shows results from:

the fastest rate of reaction?

answer .....

the largest lumps of magnesium carbonate?

answer ......[1]

Total [6]

#### **END OF QUESTION PAPER**

PLEASE DO NOT WRITE ON THIS PAGE



#### PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

# The Periodic Table of the Elements

| 1                                 | 2                                  |                                      |                                     |                                                  |                              | ı                           |                                  | 1                               |                                 |                                   |                                   | 3                                          | 4                                  | 5                                 | 6                                    | 7                                           | 0                                |
|-----------------------------------|------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------------------|------------------------------|-----------------------------|----------------------------------|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------|--------------------------------------------|------------------------------------|-----------------------------------|--------------------------------------|---------------------------------------------|----------------------------------|
|                                   |                                    |                                      |                                     | Key                                              |                              |                             | 1<br>H<br>hydrogen<br>1          |                                 |                                 |                                   |                                   |                                            |                                    |                                   |                                      |                                             | 4<br>He<br>helium<br>2           |
| 7<br><b>Li</b><br>lithium<br>3    | 9<br><b>Be</b><br>beryllium<br>4   |                                      | ato                                 | ve atomic<br>omic symbound<br>name<br>(proton) r | bol                          |                             |                                  |                                 |                                 |                                   |                                   | 11<br><b>B</b><br>boron<br>5               | 12<br><b>C</b><br>carbon<br>6      | 14<br><b>N</b><br>nitrogen<br>7   | 16<br>O<br>oxygen<br>8               | 19<br>F<br>fluorine<br>9                    | 20<br><b>Ne</b><br>neon<br>10    |
| 23<br><b>Na</b><br>sodium<br>11   | 24<br>Mg<br>magnesium<br>12        |                                      |                                     |                                                  |                              | •                           |                                  |                                 |                                 |                                   |                                   | 27<br><b>A</b> <i>I</i><br>aluminium<br>13 | 28<br>Si<br>silicon<br>14          | 31<br>P<br>phosphorus<br>15       | 32<br><b>S</b><br>sulfur<br>16       | 35.5<br><b>C</b> <i>I</i><br>chlorine<br>17 | 40<br><b>Ar</b><br>argon<br>18   |
| 39<br><b>K</b><br>potassium<br>19 | 40<br>Ca<br>calcium<br>20          | 45<br>Sc<br>scandium<br>21           | 48<br><b>Ti</b><br>titanium<br>22   | 51<br><b>V</b><br>vanadium<br>23                 | 52<br>Cr<br>chromium<br>24   | 55<br>Mn<br>manganese<br>25 | 56<br><b>Fe</b><br>iron<br>26    | 59<br><b>Co</b><br>cobalt<br>27 | 59<br><b>Ni</b><br>nickel<br>28 | 63.5<br><b>Cu</b><br>copper<br>29 | 65<br><b>Zn</b><br>zinc<br>30     | 70<br><b>Ga</b><br>gallium<br>31           | 73<br><b>Ge</b><br>germanium<br>32 | 75<br><b>As</b><br>arsenic<br>33  | 79<br><b>Se</b><br>selenium<br>34    | 80<br>Br<br>bromine<br>35                   | 84<br><b>Kr</b><br>krypton<br>36 |
| 85<br><b>Rb</b><br>rubidium<br>37 | 88<br>Sr<br>strontium<br>38        | 89<br>Y<br>yttrium<br>39             | 91<br>Zr<br>zirconium<br>40         | 93<br><b>Nb</b><br>niobium<br>41                 | 96<br>Mo<br>molybdenum<br>42 | [98] Tc technetium 43       | 101<br>Ru<br>ruthenium<br>44     | 103<br>Rh<br>rhodium<br>45      | 106<br>Pd<br>palladium<br>46    | 108<br><b>Ag</b><br>silver<br>47  | 112<br>Cd<br>cadmium<br>48        | 115<br><b>In</b><br>indium<br>49           | 119<br><b>Sn</b><br>tin<br>50      | 122<br>Sb<br>antimony<br>51       | 128<br><b>Te</b><br>tellurium<br>52  | 127<br> <br>  iodine<br>  53                | 131<br><b>Xe</b><br>xenon<br>54  |
| 133<br>Cs<br>caesium<br>55        | 137<br><b>Ba</b><br>barium<br>56   | 139<br><b>La*</b><br>lanthanum<br>57 | 178<br>Hf<br>hafnium<br>72          | 181<br><b>Ta</b><br>tantalum<br>73               | 184<br>W<br>tungsten<br>74   | 186<br>Re<br>rhenium<br>75  | 190<br><b>Os</b><br>osmium<br>76 | 192<br>Ir<br>iridium<br>77      | 195<br>Pt<br>platinum<br>78     | 197<br><b>Au</b><br>gold<br>79    | 201<br><b>Hg</b><br>mercury<br>80 | 204<br><b>T</b> //<br>thallium<br>81       | 207<br><b>Pb</b><br>lead<br>82     | 209<br><b>Bi</b><br>bismuth<br>83 | [209]<br><b>Po</b><br>polonium<br>84 | [210]<br>At<br>astatine<br>85               | [222]<br>Rn<br>radon<br>86       |
| [223] Fr francium 87              | [226]<br><b>Ra</b><br>radium<br>88 | [227]<br>Ac*<br>actinium<br>89       | [261]<br>Rf<br>rutherfordium<br>104 | [262] <b>Db</b> dubnium 105                      | [266] Sg seaborgium 106      | [264] <b>Bh</b> bohrium 107 | [277] Hs hassium 108             | [268] Mt meitnerium 109         | [271] Ds darmstadtium 110       | [272] Rg roentgeniu m 111         | Elem                              | ents with ato                              |                                    | s 112-116 ha                      |                                      | ported but no                               | ot fully                         |

<sup>\*</sup> The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number



## **CONFIDENTIAL**

GCSE Unit

MARK SCHEME

2010 Sample Paper

Chemistry A (J634) Modules C4, C5 and C6 Foundation Tier

A322/01

Maximum Mark: 42

Paper set date: 25/01/08

© OCR 2009

#### **Guidance for Examiners**

Additional Guidance within any mark scheme takes precedence over the following guidance.

- 1. Mark strictly to the mark scheme.
- 2. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.
- 3. Accept any clear, unambiguous response which is correct, e.g. mis-spellings if phonetically correct (but check additional guidance).
- 4. Abbreviations, annotations and conventions used in the detailed mark scheme:

/ = alternative and acceptable answers for the same marking point

(1) = separates marking points

**not/reject** = answers which are not worthy of credit

**ignore** = statements which are irrelevant - applies to neutral answers

allow/accept = answers that can be accepted

(words) = words which are not essential to gain credit

words = underlined words must be present in answer to score a mark

ecf = error carried forward AW/owtte = alternative wording ORA = or reverse argument

E.g. mark scheme shows 'work done in lifting / (change in) gravitational potential energy' (1)

work done = 0 marks work done lifting = 1 mark change in potential energy = 0 marks gravitational potential energy = 1 mark

- If a candidate alters his/her response, examiners should accept the alteration.
- 6. Crossed out answers should be considered only if no other response has been made. When marking crossed out responses, accept correct answers which are clear and unambiguous.
- 7. The list principle:

If a list of responses greater than the number requested is given, work through the list from the beginning. Award one mark for each correct response, ignore any neutral response, and deduct one mark for any incorrect response, e.g. one which has an error of science. If the number of incorrect responses is equal to or greater than the number of correct responses, no marks are awarded. A neutral response is correct but irrelevant to the question.

© OCR 2009

#### 8. Marking method for tick boxes:

Always check the additional guidance.

If there is a set of boxes, some of which should be ticked and others left empty, then judge the entire set of boxes.

If there is at least one tick, ignore crosses. If there are no ticks, accept clear, unambiguous indications, e.g. shading or crosses.

Credit should be given for each box correctly ticked. If more boxes are ticked than there are correct answers, then deduct one mark for each additional tick. Candidates cannot score less than zero marks.

E.g. If a question requires candidates to identify a city in England, then in the boxes

| Edinburgh   |  |
|-------------|--|
| Manchester  |  |
| Paris       |  |
| Southampton |  |

the second and fourth boxes should have ticks (or other clear indication of choice) and the first and third should be blank (or have indication of choice crossed out).

| Edinburgh   |   |   | ✓ |   |   | ✓ | ✓ | ✓ | ✓        |    |
|-------------|---|---|---|---|---|---|---|---|----------|----|
| Manchester  | ✓ | × | ✓ | ✓ | ✓ |   |   |   | <b>√</b> |    |
| Paris       |   |   |   | ✓ | ✓ |   | ✓ | ✓ | ✓        |    |
| Southampton | ✓ | × |   | ✓ |   | ✓ | ✓ |   | ✓        |    |
| Score:      | 2 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0        | NR |

| Qu | esti | ion | Expected Answers                              | Marks | Rationale                                                                                                                                                                                                                                              |
|----|------|-----|-----------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | а    | i   | increases increases / decreases decreases (1) | 1     | allow either increases and increases for one mark or decreases and decreases for one mark  allow pairs of words with the same meaning eg smaller smaller / larger larger / rises rises / falls falls / gets higher gets higher / gets lower gets lower |
|    | а    | ii  | gas (1)                                       | 1     | <b>allow</b> in table more than one circled = 0                                                                                                                                                                                                        |
|    |      | iii | black (1)                                     | 1     | more than one circled = 0                                                                                                                                                                                                                              |
|    | b    | i   | chlorine bromine iodine (1)                   | 1     | 2 <sup>nd</sup> box                                                                                                                                                                                                                                    |
|    |      | ii  | chlorine, bromine and iodine (1)              | 1     | 1 <sup>st</sup> box                                                                                                                                                                                                                                    |
|    | С    |     | C (1)                                         | 1     | more than one letter = 0                                                                                                                                                                                                                               |
|    |      |     | Total                                         | 6     |                                                                                                                                                                                                                                                        |

| Qu | esti | on | Expected Answers                                                  | Marks | Rationale                                                                                                                          |
|----|------|----|-------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------|
| 2  | а    | i  | Li Na K (1)                                                       | 1     | 4 <sup>th</sup> box                                                                                                                |
|    |      | ij | Na Mg Ar (1)                                                      | 1     | 1 <sup>st</sup> box                                                                                                                |
|    | b    |    | bubbles (1) moves around on surface (1) melts (1) flame (1)       | 4     |                                                                                                                                    |
|    | C    |    | four electrons drawn on or touching the outer shell or circle (1) | 1     | <b>allow</b> electrons drawn singly or in pairs / x for electron extra shell with electron(s) / extra electrons in inner shell = 0 |
|    | d    |    | 2.8 (1)<br>2.8.8 (1)                                              | 2     | allow 2.8.0 and 2.8.8.0 ignore + or - symbols                                                                                      |
|    |      |    | Total                                                             | 9     |                                                                                                                                    |

| Qı | uesti | on | Expected Answers                                                                                                                                                                                                                                                                                  | Marks    | Rationale                                                                |
|----|-------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------|
| 3  | а     |    | sodium chloride / sodium sulfate / sodium carbonate / sodium bromide / potassium chloride / potassium sulfate / potassium carbonate / potassium bromide / magnesium chloride / magnesium carbonate / magnesium bromide / calcium chloride / calcium sulfate / calcium carbonate / calcium bromide | 1        | not magnesium sulphate  formula = 0                                      |
|    | b     |    | between ions of opposite charge                                                                                                                                                                                                                                                                   | 1<br>(1) | 2 <sup>nd</sup> box                                                      |
|    | С     |    | sea water contains charged ions / sea water contains positive and negative ions (1) the ions in sea water can move (1)                                                                                                                                                                            | 2        |                                                                          |
|    | d     |    | sodium chloride (1)                                                                                                                                                                                                                                                                               | 1        | allow Na C/ ignore + or - symbols reject sodium chlorine / (common) salt |
|    |       |    | Total                                                                                                                                                                                                                                                                                             | 5        |                                                                          |

| Qι | estion | Expected Answers                      | Marks | Rationale                                                           |
|----|--------|---------------------------------------|-------|---------------------------------------------------------------------|
| 4  | а      | covalent hard high insoluble does not | 4     | 4 correct (3) 3 correct (2) 2 correct (1)                           |
|    | b      | nitrogen and oxygen (1)               | 1     | <b>both</b> answers required for (1) mark more than two circled = 0 |
|    |        | Total                                 | 5     |                                                                     |

| Qı | Question |   | Expected Answers                                                                  | Marks | Rationale                                                              |
|----|----------|---|-----------------------------------------------------------------------------------|-------|------------------------------------------------------------------------|
| 5  | а        |   | carbon (1)                                                                        | 1     | formula = 0                                                            |
|    | b        |   | copper (1)<br>zinc (1)                                                            | 2     | each additional circle above 2 loses one mark                          |
|    | С        | i | carbon is more reactive than iron (1) carbon is less reactifve than aluminium (1) | 2     | Ora ora allow 'aluminium is more reactive than iron 'for one mark only |
|    |          |   | Total                                                                             | 5     |                                                                        |

| Qı | Question |  | Expected Answers                                                                                                                                      | Marks | Rationale                                                        |
|----|----------|--|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------|
| 6  | а        |  | neutralisation (1)                                                                                                                                    | 1     |                                                                  |
|    | b        |  | measure a volume of the alkali into a flask (1) add an indicator (1) add acid from a burette until colour changes stop adding when colour changes (1) | 4     | .allow alkali in burette and acid in flask with no loss of marks |
|    | С        |  | H <sub>2</sub> (1)                                                                                                                                    | 1     | more than one circled = 0                                        |
|    |          |  | Total                                                                                                                                                 | 6     |                                                                  |

© OCR 2009

| Qι | Question |    | Expected Answers                                           | Marks | Rationale                                                              |
|----|----------|----|------------------------------------------------------------|-------|------------------------------------------------------------------------|
| 7  | а        |    | filtration / filtering / filter / decantation / decant (1) | 1     |                                                                        |
|    | b        | i  | 84 (1)<br>120 (1)                                          | 2     | ignore units                                                           |
|    |          | ii | 90 (1)                                                     | 1     | ignore units                                                           |
|    | С        | i  | finishes at the same volume (1)                            | 1     | 4 <sup>th</sup> box                                                    |
|    |          | == | A<br>D                                                     | 1     | <b>both</b> answers required for one mark must be in the correct order |
|    |          |    | Total                                                      | 6     |                                                                        |

|  |  | Section total | 42 |  |  |
|--|--|---------------|----|--|--|