Wednesday 1 February 2012 - Afternoon

GCSE TWENTY FIRST CENTURY SCIENCE

 CHEMISTRY AA322/02 Unit 2: Modules C4 C5 C6 (Higher Tier)

Candidates answer on the Question Paper. A calculator may be used for this paper.

OCR supplied materials:
None
Other materials required:

- Pencil
- Ruler ($\mathrm{cm} / \mathrm{mm}$)

Duration: 40 minutes

| Candidate
 forename | Candidate
 surname | |
| :--- | :--- | :--- | :--- |

Centre number						Candidate number				

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- The Periodic Table is printed on the back page.
- This document consists of $\mathbf{1 6}$ pages. Any blank pages are indicated.

Answer all the questions.

1 Ben does some flame tests.
(a) He heats a sodium compound in a hot flame.

He then carries out the same test using a potassium compound.
What would Ben expect to see when he does the two tests?
Put a tick $(\boldsymbol{\checkmark})$ in the box next to the correct answer.

The flames flash at different rates.

The flames are different colours.

The sodium compound burns much faster than the potassium compound. \square

The heights of the flames are different in each test.

(b) Ben does some more flame tests.

He compares the flame test results for a potassium compound and a sodium compound.
He looks at the flames from each compound using a spectroscope.
The diagrams show what Ben sees.
spectrum of sodium compound
\square
spectrum of potassium compound

Ben does the same test on a mixture of compounds. He does not know what the mixture contains.
spectrum for the mixture of compounds

Ben writes down a conclusion from the results of his tests.

Conclusion

The mixture contains potassium compounds but no sodium compounds. The mixture also contains a compound from another unknown element.

Explain how Ben's results support his conclusion.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Ben thinks that different elements have different spectra because their atoms have different numbers of electrons.

The table shows the number and arrangement of electrons in some atoms.

element	number of electrons	electron arrangement
$\ldots . ~$		
sodium (Na)	11	2.1
potassium (K)	$\ldots \ldots \ldots . . .$.	2.8 .8 .1

Complete the table by filling in the gaps.

2 Lithium is a Group 1 metal. Some batteries contain lithium.
Amy wants to find out what happens if air or water react with lithium.
(a) Amy cuts a fresh piece of lithium.

The fresh surface of the lithium reacts with oxygen in the air.
(i) What does Amy see when the surface reacts with oxygen?

Put a tick (\mathcal{J}) in the box next to the correct answer.

The surface bubbles and fizzes.

A flame appears. \square
The surface changes from shiny to dull. \square
The piece of lithium gets smaller. \square
(ii) When lithium reacts with oxygen, lithium oxide is made.

When lithium oxide is left in the air for a long time, it reacts with carbon dioxide to form lithium carbonate.

Complete the table of information by filling in the missing formulae.

name of compound	formula	formula of positive ion in compound	formula of negative ion in compound
lithium oxide		Li^{+}	O^{2-}
lithium carbonate	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	Li^{+}	

(b) Amy drops a freshly cut piece of lithium into a beaker of water.

The lithium fizzes.
(i) A gas is made in the reaction.

What is the name of the gas?
Put a ring around the correct answer.
carbon dioxide chlorine hydrogen oxygen nitrogen
[1]
(ii) Amy adds an indicator to the solution in the beaker at the end of the reaction.

The indicator shows that the solution contains an alkali.
What is the name of the alkali?
(c) Amy does some research into another element, caesium.

Caesium is also used in some batteries.
She knows that caesium and lithium are both in Group 1.
(i) Which of the following statements about caesium and lithium are true and which are false?

Put a tick (\checkmark) in one box in each row to show whether each statement is true or false.

	true	false
Both elements are in the same vertical column of the Periodic Table.		
They are both non-metal elements.		
The melting points of both elements are the same.		
An atom of caesium has the same number of protons as an atom of lithium.		
The elements have the same number of electrons in their outer shells.		

(ii) Caesium reacts with cold water.

Predict how the reaction of caesium with water will be different from the reaction of lithium with water.

Put ticks (\checkmark) in the boxes next to the two correct answers.

The caesium reaction takes a much longer time. \square
A different gas is made in each reaction. \square
The caesium reaction is much faster. \square
The caesium reaction makes an acid. \square
A different compound is made in each reaction. \square
[Total: 8]

3 Joe finds some information about the bonding in different chemicals.
(a) The table shows some of the information he finds.

Complete the table by putting a tick (\checkmark) in one box in each row to show the type of bonding in each chemical.

chemical	conducts electricity when solid	conducts electricity when molten	ionic	covalent	metallic
A	yes	yes			
B	no	yes			
C	no	no			

(b) Joe writes down some general statements about ionic and covalent compounds.

Put a tick $(\boldsymbol{\checkmark})$ in one box in each row to show whether each statement is only true for ionic compounds or only true for covalent compounds or true for both.

	only true for ionic compounds	only true for covalent compounds	true for both
conduct electricity when dissolved in water			
may have melting and boiling points below room temperature			
may have weak forces of attraction between molecules			
atoms are held together by forces between nuclei and shared electrons			
may be solids at room temperature			

[3]
[Total: 5]

4 Sugars and amino acids are important molecules in living things.
The diagrams show the structure of a sugar and an amino acid.

(a) Describe the similarities and differences between the two molecules.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The formula of the sugar in the diagram is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.

What is the formula of the amino acid?
formula

5 Copper is extracted from minerals. Different copper minerals contain different copper compounds.
The table shows the formulae of some compounds of copper in different minerals.

mineral	formula of compound	relative formula mass of compound	mass of copper in formula
cuprite	$\mathrm{Cu}_{2} \mathrm{O}$	143	127
malachite	CuCO_{3}	123.5	
tenorite	CuO		63.5

(a) Complete the table by filling in the missing masses.
(b) Copper can be extracted from each of these compounds.

Draw straight lines to connect each compound to the correct mass of copper that can be extracted from 1 kg of the compound.

(c) Copper is extracted by reduction.

Which of the following statements explains what happens during this reduction reaction?
Put a tick (\mathcal{J}) in the box next to the correct answer.

Carbon removes oxygen from the copper compound. \square
Small amounts of copper are produced. \square
Copper gives up electrons. \square
The mineral is melted down.

BLANK PAGE

6 Rose does an experiment to make some zinc sulfate.
She reacts zinc metal with an acid.
(a) (i) Give the name and formula of the acid that reacts with zinc to make zinc sulfate.
name \qquad
formula
(ii) Give the name and formula of the gas that is made when zinc metal reacts with the acid. name \qquad formula
(b) Rose does five experiments to find out how changing the concentration of acid affects the rate of the reaction.

She uses the same mass of zinc in each test.
She uses different mixtures of acid and water in each test.
For each concentration, she measures the time taken for the reaction to make $10 \mathrm{~cm}^{3}$ of gas.
The table shows her results.

experiment	volume of acid in $\mathbf{~ m ~}^{\mathbf{3}}$	volume of water $\mathbf{i n} \mathbf{~ m ~}^{\mathbf{3}}$	time to collect $\mathbf{1 0}^{\mathbf{c m}} \mathbf{3}$ gas $\mathbf{i n} \mathbf{~}$
1	50	0	5
2	40	10	9
3	30	20	12
4	20	30	16
5	10	40	21

(i) Which experiment uses the lowest concentration of acid?
experiment
(ii) How does the rate of reaction change when the concentration of the acid changes?

Explain how information in the table shows this.
\qquad
\qquad
\qquad
(iii) Explain why changing the concentration of acid changes the rate of reaction.

Use ideas about particles colliding in your answer.
\qquad
\qquad
\qquad
\qquad
(c) Rose wants to use a different solid instead of zinc metal.

Which of these solids react with the acid to make zinc sulfate?
Put rings around the three correct answers.
zinc chloride zinc carbonate zinc nitrate zinc oxide zinc hydroxide

7 Liz does a titration.
She puts $20 \mathrm{~cm}^{3}$ of hydrochloric acid in a beaker and adds potassium hydroxide solution from a burette.

She measures the pH of the solution in the beaker using a pH meter.

The graph shows her results.

(a) (i) What are the pHs of the hydrochloric acid and the potassium hydroxide solution that Liz used in the titration?
pH of hydrochloric acid \qquad
pH of potassium hydroxide solution
(ii) What volume of potassium hydroxide solution exactly neutralises the hydrochloric acid?
(b) Liz does more titrations using samples of two different concentrations of hydrochloric acid, \mathbf{A} and \mathbf{B}.

She uses the same potassium hydroxide solution each time.
These are her results.
These are her results.

	A	B
volume of hydrochloric acid used in cm^{3}	20	20
volume of potassium hydroxide solution used to neutralise the acid in cm^{3}	15	10

Which of the following statements about these titrations is true?
Put a tick (\checkmark) in the box next to the correct answer.
\mathbf{A} is more concentrated than \mathbf{B}.
Some of the hydrochloric acid in sample B did not react with the potassium hydroxide solution.
The total volume of solution at the end of the titration is higher for \mathbf{B} than for \mathbf{A}.
Potassium chloride and carbon dioxide are made in both titrations.
(c) All neutralisation reactions can be shown by a single ionic equation.

The equation shows the ions from the acid reacting with the ions from the alkali.
Complete the ionic equation for neutralisation by filling in the boxes.
Choose formulae from this list.

$O C R^{\text {T }}$
 RECOGNISING ACHIEVEMENT

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
The Periodic Table of the Elements

