GENERAL CERTIFICATE OF SECONDARY EDUCATION

Unit 2 Modules C4 C5 C6 (Higher Tier)
FRIDAY 25 JANUARY 2008

Morning
Time: 40 minutes

Candidates answer on the question paper.
Additional materials (enclosed):
None
Calculators may be used.
Additional materials: Pencil Ruler ($\mathrm{cm} / \mathrm{mm}$)

Candidate
Surname

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Do not write outside the box bordering each page.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	6	
2	9	
3	6	
4	4	
5	5	
6	6	
7	6	
TOTAL	42	

This document consists of $\mathbf{1 5}$ printed pages and $\mathbf{1}$ blank page.

Answer all the questions.

1 Elements in Group 7 are called the halogens. The table gives some information about the physical properties of three of the halogens.

halogen	proton number	melting point in ${ }^{\circ} \mathbf{C}$	boiling point in ${ }^{\circ} \mathbf{C}$	state at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$	colour
chlorine	17	-101	-35	gas	pale green
bromine	35	-7	59		deep red
iodine	53	114	184		dark grey

(a) (i) Finish the table by writing the state for bromine and iodine in the empty boxes.
(ii) The halogens show trends in physical properties with increasing proton number.

Finish this sentence about the trend in melting point.
Use information from the table to help you answer this question.
As the proton number \qquad the melting point
(b) The halogens also show a trend in reactivity.

This can be shown by the displacement reactions when halogens are added to solutions of halides.

A student made the following observations.

- When chlorine is added to potassium bromide solution, red bromine appears.
- When bromine is added to potassium iodide solution, brown iodine appears.
- When bromine is added to potassium chloride solution, there is no displacement.
(i) Use this information to place these three halogens in order of reactivity. most reactive \qquad
least reactive
(ii) Fluorine is a halogen with proton number 9 .

Which statement describes the displacement reactions of fluorine?
Put a tick (\mathcal{J}) in the box next to the correct answer.

Fluorine displaces chlorine, bromine and iodine.

Fluorine displaces iodine but not chlorine or bromine.

Fluorine displaces chlorine and bromine but not iodine.

Fluorine displaces bromine and iodine but not chlorine.
\square
\square
\square
(c) Bromine forms ions with the formula Br^{-}.

Bromine reacts with strontium to form strontium bromide, SrBr_{2}.
Use this information to work out the formula of a strontium ion.

2 This diagram shows part of the Periodic Table.

(a) (i) Write down the symbol and name of an element in the same period as calcium. symbol \qquad name
(ii) Write down the symbol and name of an element in the same group as neon. symbol \qquad name \qquad
(iii) Finish the diagram to show the arrangement of electrons in an atom of argon.

Use a circle \bigcirc to show the position of each electron.
The positions of two electrons have already been drawn on the diagram to help you.

(b) The elements sodium and chlorine react to form the compound sodium chloride, NaCl .
(i) Write a balanced symbol equation for the reaction between sodium and chlorine. Include state symbols in your equation.
(ii) Sodium chloride is made of sodium ions, Na^{+}, and chloride ions, Cl^{-}.

Which statement describes evidence that sodium chloride is made of ions?
Put a tick (\mathcal{J}) in the box next to the correct answer.

Sodium chloride is a solid.

Sodium chloride is made of crystals.

Sodium chloride has a high melting point.

Molten sodium chloride conducts electricity. \square
(iii) The table shows the arrangement of electrons in sodium atoms and chlorine atoms.

Complete the table to show the arrangement of electrons in sodium ions and chloride ions.

sodium atom $\mathbf{N a}$	sodium ion $\mathbf{N a}^{+}$	chlorine atom $\mathbf{C l}$	chloride ion $\mathbf{C \mathbf { l } ^ { - }}$
2.8 .1		2.8 .7	

3 The table gives information about ions dissolved in sea water.

ion	symbol	percentage by mass of the total dissolved solids (\%)
chloride	Cl^{-}	55
sodium	Na^{+}	30
sulfate	$\mathrm{SO}_{4}{ }^{2-}$	8
magnesium	Mg^{2+}	4
calcium	Ca^{2+}	1
potassium	K^{+}	1
carbonate	$\mathrm{CO}_{3}{ }^{2-}$	0.5
bromide	Br^{-}	0.2

These ions enter the sea water when crystals of ionic compounds in rocks dissolve.
Each of these ionic compounds is made up of one type of positive ion and one type of negative ion shown in the table.
(a) (i) One compound that dissolved from the rocks into the water is magnesium sulfate.

Suggest the name and formula of one other ionic compound that dissolved from the rocks into the water.

Use information from the table to help you.
name \qquad formula
(ii) When a sample of sea water is evaporated to dryness, a white solid is left. This is a mixture of several ionic compounds.

Look at the percentage by mass of the total dissolved solids column in the table.
Use the information to name the ionic compound that makes up most of the white solid.
(b) Sea water conducts electricity.

Which statements give the best explanation for this?
Put a tick (\checkmark) in the box next to each correct explanation.

Ions are able to move around in the sea water. \square
Electrons can pass from ion to ion in the sea water.

The sea water contains more ions with positive charges than ions with negative charges.

The sea water contains ions that have positive charges and ions that have negative charges. \square
(c) Solid ionic compounds form crystals.

Finish the sentence about these crystals by choosing words from the list.

atoms	attraction	ions	molecules
opposite	positive	repulsion	similar

In the crystals of solid ionic compounds, particles called \qquad are held together
by the force of \qquad between particles with \qquad charges.
(d) Solid ionic compounds have giant, three-dimensional structures.

Which of the following properties are shown by most solid ionic compounds?
Put a tick (\checkmark) in the box next to each correct answer.

4 Diamond is a giant structure of carbon atoms with bonding similar to that in silicon dioxide.

(a) Here are some sentences about diamond.

Finish these sentences by putting a tick $(\mathcal{\checkmark})$ in the box next to the correct word in each pair.

Each carbon atom is joined to | four | |
| :--- | :--- |
| three | |

This structure gives diamond a very | low | |
| :--- | :--- |
| | high |
| | |

Iow		solubility in water and	low	
high			electrical conductivity.	

(b) Living things are made up from compounds mainly containing four elements.

One of these elements is carbon.
What are the names of the other three elements?
1.
2. \qquad
3.

5 The ore haematite contains iron(III) oxide. Iron is extracted from this ore by reaction with carbon. The products of this reaction are iron and carbon dioxide.
(a) Finish this symbol equation for the reaction.
\qquad $+$ \qquad
(b) A haematite ore contains 80% by mass of iron(III) oxide.

Calculate the maximum mass of iron that can be extracted from each tonne of this ore.

Show each step of your calculation as indicated below.
$(1$ tonne $=1000 \mathrm{~kg})$
(relative atomic mass, $A_{r}: \mathrm{Fe}=56, O=16$)
mass of iron(III) oxide in 1 tonne of haematite $=$
kg
formula mass of iron(III) oxide $=$
mass of iron in 1 tonne of haematite $=$ \qquad kg

6 An acid and an alkali react to form a salt and water.

$$
\text { acid + alkali } \rightarrow \text { salt + water }
$$

(a) Draw straight lines to join up the boxes to show which acid reacts with which alkali to make each salt.
acid
sulfuric acid
alkali
potassium hydroxide
ammonium hydroxide
sodium hydroxide
magnesium hydroxide
phosphoric acid
salt
sodium sulfate
potassium chloride
magnesium nitrate
(b) (i) What is the formula of the ion produced when any acid dissolves in water?
(ii) What is the formula of the ion produced when any alkali dissolves in water?
(iii) Write the equation for the neutralisation reaction between these two ions.
\qquad
[Total: 6]

7 Magnesium sulfate is one of the chemicals in detergent powder.
Mary makes some magnesium sulfate using this reaction.
magnesium carbonate + sulfuric acid \rightarrow magnesium sulfate + water + carbon dioxide
$\mathrm{MgCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \quad \mathrm{MgSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(a) (i) The theoretical yield for Mary's experiment is 12.0 g .

Mary dries and weighs the magnesium sulfate she makes. This is her actual yield.
Actual yield $=10.8 \mathrm{~g}$.
Work out the percentage yield for Mary's experiment.
percentage yield $=$
(ii) The relative formula mass of magnesium carbonate is 84 .

The relative formula mass of magnesium sulfate is 120 .
Calculate the mass of magnesium carbonate that must react with sulfuric acid to make the theoretical yield of 12.0 g of magnesium sulfate.
mass of magnesium carbonate $=$
(b) Mary investigates the rate of this reaction with different sized lumps of magnesium carbonate. She keeps all other conditions constant.

She measures the volume of carbon dioxide given off at time intervals and plots her results on a grid.

(i) Which line, A, B, C or D, shows results from:
the fastest rate of reaction?
answer \qquad
the largest lumps of magnesium carbonate?
answer
(ii) In each of the four experiments Mary used $100 \mathrm{~cm}^{3}$ of solution containing 1.0 g sulfuric acid.

Mary now repeats the experiments, but changes the amount of sulfuric acid.
For each change put a tick (\checkmark) in the correct box to show whether the reaction would be slower, the same speed, or faster.

	slower	same speed	faster
$100 \mathrm{~cm}^{3}$ solution containing 2.0 g sulfuric acid	\square	\square	\square
$100 \mathrm{~cm}^{3}$ solution containing 0.5 g sulfuric acid	\square	\square	
$200 \mathrm{~cm}^{3}$ solution containing 2.0 g sulfuric acid	\square	\square	\square
$200 \mathrm{~cm}^{3}$ solution containing 1.0 g sulfuric acid	\square	\square	\square
$50 \mathrm{~cm}^{3}$ solution containing 0.5 g sulfuric acid	\square	\square	\square
[Total: 6]			

END OF QUESTION PAPER

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
© OCR 2008
The Periodic Table of the Elements

