GENERAL CERTIFICATE OF SECONDARY EDUCATION

Unit 2 Modules C4 C5 C6 (Higher Tier)
WEDNESDAY 18 JUNE 2008

Candidates answer on the question paper.
Additional materials (enclosed):
None
Calculators may be used.
Additional materials: Pencil

Candidate
Surname

Centre
Number

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42 .
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE

Qu.	Max.	Mark
1	2	
2	9	
3	9	
4	2	
5	3	
6	3	
7	5	
8	3	
9	6	
TOTAL	42	

This document consists of $\mathbf{1 7}$ printed pages and $\mathbf{3}$ blank pages.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Answer all the questions.

1 Bobby reads that helium was discovered on the Sun in 1868. Thirty years later it was found on Earth. He asks his friends why helium was discovered on the Sun first.

Which two people give the best answers?
and

2 Many chemicals form ionic crystals.
(a) Mary asks her friends to describe what happens when ionic crystals melt.

Which two people are correct?
and
(b) Magnesium chloride is made of Mg^{2+} ions and Cl^{-}ions.

Put a ring around the formula of magnesium chloride.
$\mathbf{M g C l} \quad \mathbf{M g}_{2} \mathbf{C l} \quad \mathbf{M g C l}_{2} \quad \mathbf{M g}_{2} \mathrm{Cl}_{2}$
(c) Lithium nitride is made of Li^{+}ions and N^{3-} ions.

Put a ring around the formula of lithium nitride.
LiN_{3}
$\mathrm{Li}_{3} \mathrm{~N}_{3}$
$\mathrm{Li}_{3} \mathrm{~N}$
LiNO_{3}
(d) Sodium chloride forms ionic crystals.
(i) Here are some statements about crystals of sodium chloride.

Write \mathbf{T} in the box next to each true statement and \mathbf{F} in the box next to each false one.
\mathbf{T} (true)
or F (false)

Each crystal contains many molecules of NaCl .
The bonds between the particles are strong.
The bonds are all on the outside of the crystal.
There is a very large number of bonds.
\square
The particles in the crystal are held together by attraction between opposite charges.

The particles are arranged in a regular way.
(ii) Put ticks $(\mathcal{\checkmark})$ in the boxes next to the two statements which explain why sodium chloride has a high melting point.

Each crystal contains many molecules of NaCl .
The bonds between the particles are strong.
The bonds are all on the outside of the crystal.
There is a very large number of bonds.
The particles are arranged in a regular way.

3 Here is an outline of the Periodic Table.

(a) Which arrow or arrows show increasing numbers of electrons?

Put a tick (\mathcal{J}) in the box next to the correct answer.

(b) Which arrow or arrows show electrons filling within a shell?

Put a tick (\mathcal{J}) in the box next to the correct answer.
arrow 1 only
arrow 2 only
arrow 3 only
arrow 4 only
arrows $1 \& 4$ only
arrows 2 \& 3 only
arrows $1 \& 3$ only
arrows 2 \& 4 only \square
(c) Here are the names of four elements in the Periodic Table.
bromine iodine potassium lithium
Choose from these names to answer the following questions.
(i) Which of these elements ...
... exist as diatomic molecules?
answer \qquad and \qquad
... react with water to make hydrogen gas?
answer \qquad and
... has a melting point below room temperature?
answer
(ii) Which two of these elements will react together most violently?
\qquad and
(d) The table shows information about some different pure chemicals.

Put ticks (\mathcal{J}) in the correct boxes to show the type of bonding in each chemical.

chemical	melting point in ${ }^{\circ}$ C	conducts electricity when solid	conducts electricity when melted	covalent	ionic	metallic
A	-219	no	no			
B	-39	yes	yes			
C	37	no	no			
D	119	no	no			
E	804	no	yes			
F	1539	yes	yes			

4 The diagrams show the electronic structure and the number of protons in the nucleus for each of three types of particle.

A

B

C

Which letter, A, B or \mathbf{C}, shows the structure of ..
... an atom?
answer \qquad
the ion of a Group 7 element?
answer \qquad
... the ion of a Group 1 element?
answer

5 Chemicals used in medicines are produced to high levels of purity.
Put ticks (\checkmark) in the three boxes which show why.
Impurities might have side effects.
Manufacturers can charge more for pure chemicals.
That way the dose is the same every time.
Each medicine is designed to do one job only.
Otherwise it would be impossible to test new medicines properly.
All substances work better if they are as pure as possible.
Tablets can be made smaller if the chemicals are purer.

6 Jenny is learning about gases.
(a) She asks her friends why air is a gas.

Who has suggested the best reason?
answer.
(b) The equation for the reaction between hydrogen gas and oxygen gas is:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(i) How much hydrogen will react with 8 g of oxygen gas?

Put a ring around the correct answer.
(relative atomic mass: $\mathrm{H}=1, \mathrm{O}=16$)
$1 \mathrm{~g} \quad 4 \mathrm{~g} \quad 18 \mathrm{~g} \quad 36 \mathrm{~g}$
(ii) How much water will be formed when 6 g of hydrogen react?

Put a ring around the correct answer.
$18 \mathrm{~g} \quad 36 \mathrm{~g} \quad 48 \mathrm{~g} \quad 54 \mathrm{~g}$
[Total: 3]

7 Metals can be extracted from their ores in different ways.
(a) When iron is extracted from iron ore, only five of these stages are used.

They are in the wrong order.
A Crush the ore.
B Dig the ore out of the ground.
C Electrolyse melted iron oxide.
D Heat iron oxide with carbon.
E Pour the molten iron into moulds to harden.
F Separate the mineral from the rest of the rock.
Put the five stages used for the extraction of iron into the correct order.

(b) Aluminium is produced by the electrolysis of aluminium oxide.

(i) Put a ring around the letter, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, which shows the electrode where the aluminium metal is formed.
A
B
C
D
(ii) Put a ring around the equation which shows how aluminium ions are turned into aluminium atoms.

$$
\begin{gathered}
\mathbf{A l}^{+}+\mathrm{e}^{-} \rightarrow \mathbf{A l} \\
\mathbf{A} \mathbf{l}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathbf{A l} \\
\mathbf{A l}^{+}-\mathrm{e}^{-} \rightarrow \mathbf{A l} \\
\mathbf{A l}^{3+}-3 \mathrm{e}^{-} \rightarrow \mathbf{A l}
\end{gathered}
$$

(iii) Draw an arrow on the diagram below to show the direction of movement of the oxide ion.

[Total: 5]

8 Bobby reacts solutions of two chemicals.
He measures the rate of the reaction and how much product is made.
(a) Bobby asks his friends what rate of reaction means.

Who is correct?
(b) Bobby repeats the experiment.

He uses the same volumes of solution but doubles the concentration of each chemical.
Here are some statements about the particle collisions in the new reaction and about the change that Bobby observes.

Draw one straight line from the correct collision statement about the new reaction to the change that Bobby observes.

collision statement

(choose one only)
There are more particle collisions every second.
The number of reacting collisions during the whole reaction stays the same.

There are more particle collisions every second.
The number of reacting collisions during the whole reaction increases.

Particles move faster and collide harder. The number of reacting collisions during the whole reaction increases.

Particles move faster and collide harder. The number of reacting collisions during the whole reaction stays the same.
change (choose one only)

The rate increases. The amount of product increases.

The rate increases. The amount of product stays the same.

The rate does not increase.
The amount of product increases.

The rate does not increase.
The amount of product stays the same.

9 (a) Naomi reacts sulfuric acid with sodium hydroxide.
Complete the equation for this reaction.

(b) When hydrochloric acid reacts with sodium hydroxide, which pair of ions react?

A H^{+}and Cl^{-}
B H^{+}and OH^{-}
C H^{+}and H^{+}
D Na^{+}and OH^{-}
answer.
(c) Naomi measures the pH as she adds one reactant to the other.

The chemicals in the flask change as they react.
What can you say about the amount of acid and alkali at stages \mathbf{A}, \mathbf{C} and \mathbf{E} ?
Draw a straight line from each letter to the correct statement.
letter

A

C
E
statement
There is lots of acid and lots of alkali.
There is lots of acid and no alkali.
There is no acid and lots of alkali.
There is no acid and no alkali.
There is some acid and some alkali.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements																					
12		Key										3	4	5	6	7	0 4 $\mathbf{H e}$ helium 2				
$\begin{gathered} 7 \\ \mathbf{L i} \\ \text { lithium } \\ 3 \end{gathered}$	$\begin{gathered} 9 \\ \text { Be } \\ \text { beyllium } \\ 4 \end{gathered}$							atom mic sym name (proton)	mass ol number							$\begin{gathered} 11 \\ \mathbf{B} \\ \text { boron } \\ 5 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{C} \\ \text { carbon } \\ 6 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{N} \\ \text { nitrogen } \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{0} \\ \text { oxgen } \\ 8 \end{gathered}$	$\begin{gathered} 19 \\ \mathbf{F} \\ \text { fluorine } \\ 9 \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{N e} \\ \text { neon } \\ 10 \end{gathered}$
$\begin{gathered} 23 \\ \mathbf{N a} \\ \text { sodium } \\ 11 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{M g} \\ \text { magnesium } \\ 12 \\ \hline \end{gathered}$												$\begin{gathered} 28 \\ \mathbf{S i} \\ \text { silicon } \\ 14 \end{gathered}$	31 \mathbf{P} phosphorus 15	$\begin{gathered} 32 \\ \mathbf{S} \\ \text { sulfur } \\ 16 \end{gathered}$	$\begin{gathered} 35.5 \\ \mathbf{C} \\ \text { chlorine } \\ 17 \end{gathered}$	$\begin{gathered} 40 \\ \text { ar } \\ \text { argon } \\ 18 \end{gathered}$				
$\begin{gathered} 39 \\ \mathbf{K} \\ \text { potassium } \\ 19 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ \begin{array}{c} 40 \\ \text { calcium } \\ \text { catco } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 45 \\ \text { Sc } \\ \text { scandium } \\ 21 \end{gathered}$	$\begin{gathered} 48 \\ \mathbf{T i} \\ \text { titanium } \\ 22 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{v} \\ \text { vanadium } \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ \mathbf{C r} \\ \text { chromium } \\ 24 \end{gathered}$	$\begin{gathered} 55 \\ \mathbf{M n} \\ \text { manganese } \\ 25 \end{gathered}$	$\begin{aligned} & 56 \\ & \text { Fe } \\ & \text { iron } \\ & 26 \end{aligned}$	$\begin{gathered} 59 \\ \text { Co } \\ \text { cobalt } \\ 27 \\ \hline \end{gathered}$	$\begin{gathered} 59 \\ \mathbf{N i} \\ \text { nickel } \\ 28 \end{gathered}$	$\begin{gathered} 63.5 \\ \text { Cu } \\ \text { copper } \\ 29 \end{gathered}$	$\begin{aligned} & 65 \\ & \mathbf{Z n} \text { zinc } \\ & 30 \\ & \hline \end{aligned}$	$\begin{gathered} 70 \\ \mathbf{G a} \\ \text { gallium } \\ 31 \\ \hline \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{G e} \\ \text { germanium } \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} 75 \\ \text { As } \\ \text { assenic } \\ 33 \end{gathered}$	$\begin{gathered} 79 \\ \text { Se } \\ \text { selenium } \\ 34 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{B r} \\ \text { bromine } \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 84 \\ \text { Kr } \\ \text { krypton } \\ 36 \\ \hline \end{gathered}$				
$\begin{gathered} 85 \\ \text { Rb } \\ \text { rubibium } \\ 37 \\ \hline \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{S r} \\ \text { strontium } \\ 38 \\ \hline \end{gathered}$	$\begin{gathered} 89 \\ \mathbf{Y} \\ \text { yttrium } \\ 39 \\ \hline \end{gathered}$	$\begin{gathered} 91 \\ \text { Zr } \\ \text { zirconium } \\ 40 \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N b} \\ \text { niobium } \\ 41 \\ \hline \end{gathered}$	$\begin{gathered} 96 \\ \text { Mo Mo } \\ \text { molyderum } \\ 42 \end{gathered}$	[98] $\mathbf{T c}$ technetium 43	101 Ru ruthenium 44	$\begin{gathered} 103 \\ \mathbf{R h} \\ \text { rhodium } \\ 45 \end{gathered}$	$\begin{gathered} 106 \\ \text { Pd } \\ \text { palladium } \\ 46 \end{gathered}$	$\begin{gathered} 108 \\ \text { Ag } \\ \text { siver } \\ 47 \end{gathered}$	$\begin{gathered} 112 \\ \text { Cd } \\ \text { cadmum } \\ 48 \end{gathered}$	$\begin{gathered} 115 \\ \text { In } \\ \text { indium } \\ 49 \end{gathered}$	$\begin{aligned} & 119 \\ & \mathbf{S n} \\ & \text { tin } \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} 122 \\ \mathbf{S b} \\ \text { antimony } \\ 51 \\ \hline \end{gathered}$	$\begin{gathered} 128 \\ \text { Te } \\ \text { tellurium } \\ 52 \end{gathered}$	$\begin{gathered} 127 \\ \mathbf{1} \\ \text { iodine } \\ 53 \\ \hline \end{gathered}$	$\begin{gathered} 131 \\ \mathbf{X e} \\ \text { Xenon } \\ 54 \end{gathered}$				
$\begin{gathered} 133 \\ \text { Cs } \\ \text { Casium } \\ 55 \end{gathered}$	$\begin{gathered} 137 \\ \text { Ba } \\ \text { barium } \\ 56 \end{gathered}$	139 $\mathbf{L a}^{*}$ lanthanum 57	$\begin{gathered} 178 \\ \begin{array}{c} \text { Hf } \\ \text { hafnium } \\ 72 \end{array} \end{gathered}$	$\begin{gathered} 181 \\ \text { Ta } \\ \text { tantalum } \\ 73 \end{gathered}$	$\begin{gathered} 184 \\ \mathbf{w} \\ \text { tungsten } \\ 74 \end{gathered}$	$\begin{gathered} 186 \\ \mathbf{R e} \\ \text { rhenium } \\ 75 \end{gathered}$	$\begin{gathered} 190 \\ \text { Os } \\ \text { osmum } \\ 76 \end{gathered}$	$\begin{gathered} 192 \\ \text { Ir } \\ \text { iridum } \\ 77 \end{gathered}$	$\begin{gathered} 195 \\ \text { Pt } \\ \text { platinum } \\ 78 \end{gathered}$	$\begin{aligned} & 197 \\ & \text { Au } \\ & \text { gold } \\ & 79 \end{aligned}$	$\begin{gathered} 201 \\ \mathbf{H g} \\ \text { mercury } \\ 80 \end{gathered}$	$\begin{gathered} 204 \\ \text { TI } \\ \text { thallium } \\ 81 \end{gathered}$	$\begin{gathered} 207 \\ \mathbf{P b} \\ \text { lead } \\ 82 \end{gathered}$	$\begin{gathered} 209 \\ \text { Bismuth } \\ 83 \end{gathered}$	$\begin{gathered} {[209]} \\ \text { Po } \\ \text { polonium } \\ 84 \end{gathered}$	$\begin{gathered} \text { [210] } \\ \text { At } \\ \text { astatine } \\ 85 \end{gathered}$	$\begin{gathered} {[222]} \\ \mathbf{R n} \\ \text { radon } \\ 86 \end{gathered}$				
$\begin{gathered} {[223]} \\ \text { Fr } \\ \text { francium } \\ 87 \end{gathered}$	$\begin{gathered} {[226]} \\ \mathbf{R a} \\ \text { radium } \\ 88 \end{gathered}$	$\begin{gathered} {[227]} \\ \text { AC* } \\ \text { actinium } \\ 89 \end{gathered}$	$[261]$ $\left.\begin{array}{c}\mathbf{R f} \\ \text { nutrefordium } \\ 104\end{array}\right]$	$\begin{gathered} \text { [262] } \\ \text { Db } \\ \text { dubnium } \\ 105 \end{gathered}$	$\begin{gathered} {[266]} \\ \text { Sg } \\ \text { seaborgium } \\ 106 \end{gathered}$	$\begin{gathered} \text { [264] } \\ \text { Bh } \\ \text { bohrium } \\ 107 \end{gathered}$	$\begin{gathered} \text { [277] } \\ \text { Hs } \\ \text { hassium } \\ 108 \end{gathered}$	$\begin{gathered} {[268]} \\ \mathbf{M E} \\ \text { meitnerium } \\ 199 \end{gathered}$	$\begin{gathered} \text { [271] } \\ \text { Ds } \\ \text { darrutatium } \\ 110 \end{gathered}$	$\begin{gathered} {[272]} \\ \mathbf{R g} \\ \text { roentgenium } \\ 111 \end{gathered}$	Elements with atomic numbers 112-116 have been reported but not fully authenticated										

