

Η

A322/02

GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE

CHEMISTRY A

Unit 2: Modules C4 C5 C6 (Higher Tier)

* O C E / 1 1 3 5 0 *

Candidates answer on the question paper A calculator may be used for this paper

OCR Supplied Materials: None

Other Materials Required:

- Pencil
 Buler (cm/m)
- Ruler (cm/mm)

Wednesday 24 June 2009 Morning

Duration: 40 minutes

andidate orename	Candidate Surname	
---------------------	----------------------	--

Centre Number						Candidate Number					
---------------	--	--	--	--	--	------------------	--	--	--	--	--

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- Write your answer to each question in the space provided, however additional paper may be used if necessary.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **42**.
- This document consists of **20** pages. Any blank pages are indicated.
- The Periodic Table is printed on the back page.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Answer **all** the questions.

1 Lithium is an element in Group 1.

It can be added to rocket fuel to give an extra boost for take off.

(a) Lithium works well in rocket fuels because it is very reactive.

Which of the following statements about the reactivity of lithium are **true** and which are **false**?

Put ticks (\checkmark) in the correct boxes.

	true	false
Lithium reacts with cold water.		
Lithium reacts with other group 1 elements to form compounds.		
Lithium tarnishes in moist air more quickly than potassium.		
Lithium chloride is very unstable.		

[2]

(b) When the fuel burns, the lithium also burns.

Complete the balanced symbol equation to show what happens when lithium burns.

word equationlithium+oxygen \rightarrow lithium oxidebalanced symbol equation+ \rightarrow $2Li_2O$ [2]

[Total: 4]

2 Iodine solution can be used as a treatment for cuts.

(a) Solid iodine is used to make iodine solution.

Solid iodine is kept in sealed jars because it easily changes into iodine gas.

lodine gas is very harmful to people.

(i) Draw straight lines to show the correct **colour** for solid iodine and for iodine gas.

[2]

(ii) Draw straight lines to show the correct **symbols** for solid iodine and for iodine gas.

(b) Iodine is used on cuts because it stops the cuts from becoming infected.

Which two statements when put together explain why iodine stops infection?

Put ticks (\checkmark) in the boxes next to the **two** correct answers.

lodine is in group 7.	
lodine is a non-metal.	
lodine tablets purify water.	
All group 7 elements kill bacteria.	
All group 7 elements form negative ions.	

[1]

[Total: 5]

3 During an eclipse, astronomers study the light from the outer layers of the Sun.

They use spectroscopes to look at this light.

This is what they see.

(a) Why does the spectrum show a pattern of lines?

Put ticks (\checkmark) in the boxes next to the **two** correct answers.

Light is lost due to the distance from the Sun.	
The Sun emits light in a series of flashes.	
Different elements in the Sun give out light of different colours.	
Planets orbiting the Sun make shadows on its surface.	
Elements in the Sun are very hot and so emit light.	

[2]

(b) One of the elements in the Sun is beryllium.

This is how beryllium is shown in the Periodic Table.

Complete the diagram to show the structure of a beryllium atom. You need to show

- the **numbers** and **names** of the particles in the nucleus.
- the **arrangement of electrons** in the electron shells (show each electron as **x**).

[3]

[Total: 5]

4 These diagrams show the arrangement of atoms in oxygen and methane molecules.

(a) Which of the diagrams below shows a molecule of water, H_2O ?

Put a tick (\checkmark) in the box next to the correct answer.

(b) What is the formula for this molecule?

formula[2]

[Total: 3]

5 Joe does an experiment. He passes electricity through molten potassium iodide.

The diagram shows how he sets up his experiment.

(a) Why does molten potassium iodide conduct electricity?

Put ticks (\checkmark) in the boxes next to the **two** correct answers.

	Atoms can move freely between electrodes.		
	Potassium iodide is an ionic compound.		
	lons in the liquid are free to move.		
	lons in the liquid are randomly arranged.		
	Electrons can move freely through the liquid.		
	The positive electrode is attracted to the negative electrode.		[2]
(b)	Lead bromide also conducts electricity when it is molten.		
	What is the name of the element that forms at the negative electron	de?	
			[1]

(c) Joe finds out that atoms of sodium metal can be made from sodium chloride by electrolysing molten sodium chloride.

Complete the equation to show what happens when a sodium ion forms a sodium atom.

 Na^+ + \rightarrow Na

[1]

[Total: 4]

chemical	melting point in °C	boiling point in °C	does it conduct electricity when it is a solid?	does it conduct electricity when it is a liquid?
Α	-95	69	no	no
В	1261	2239	no	yes
С	1240	2100	yes	yes
D	1650	2230	no	no
Е	-138	0	no	no
(a) Wł	nich chemical is	s most likely to	be a metal?	
			answer	
(b) Wł	nich chemical is	s a liquid at roc	om temperature?	
			answer	
(c) Wł	nich chemical is	s most likely to	be silicon dioxide?	
			answer	
(d) Ch	emical E is a n	nolecular com	pound.	
Wł	nich statements	s about the bor	nding in chemical E are correct	?
Pu	t ticks (✔) in th	e boxes next to	o the two correct answers.	
	Electrons are	e gained or lost	t to form a full outer shell.	
	Electrons are	e shared betwe	een atoms.	
	The nucleus	of each bonde	d atom attracts electrons.	
	Charged ions	s are attracted	together.	
	The nuclei of	the atoms attr	act each other.	[2

The table shows information about some chemicals.

6

© OCR 2009

(e) One of the chemicals is magnesium fluoride.

Magnesium fluoride contains magnesium ions (Mg^{2+}) and fluoride ions (F^{-}).

What is the formula for magnesium fluoride?

formula[1]

[Total: 6]

- 7 Ben makes some magnesium sulfate crystals for a school display.
 - (a) He makes magnesium sulfate by reacting a solid with an acid.
 - (i) Give the name of the acid Ben should use.

(ii) Two of the following compounds react with the acid to make magnesium sulfate.

Put a (ring) around the **two** correct compounds.

magnesium carbonate	magnesium	n chloride	magnesium bromide	
magnesiun	n oxide	magnesium n	itrate	[2]

(b) The flow chart shows how Ben makes his crystals.

Step 1 Add the solid magnesium compound to the acid until no more reacts.

(i)	Vhy does the solid compound stop reacting?					
	Put a tick (\checkmark) in the box next to the correct answer.					
	The pH of the acid falls.					
	All the gas is used up.					
	The magnesium compound becomes less reactive	э.				
	All the acid is used up.		[1]			
(ii)	Why does Ben wash water through the filter paper?					
	Put a tick (\checkmark) in the box next to the correct answer.					
	to dilute the solution					
	to stop the reaction					
	to get more magnesium sulfate through the filter					
	to remove impurities		[1]			

(iii) Ben evaporates the solution. He stops heating when about half the solution is left.Read the following statements and decide whether they are true or false.

Put ticks (\checkmark) in the correct boxes.

	true	false
Heating the solution to dryness gives the largest crystals.		
The solution becomes more concentrated as he heats it.		
The more water left after heating, the faster the crystals form.		
Heating the solution for too long makes the solid salt evaporate.		

[2]

(c) Ben thinks the rate of reaction between the solid and the acid is too fast.

Which of the following changes will **slow down** the rate of reaction?

Put a tick (\checkmark) in the box next to the correct answer.

increase the temperature	
use a catalyst	
use acid that is more dilute	
grind the solid into smaller pieces	

[1]

[Total: 8]

8 Look at the labels on the following solutions of chemicals.

(a) (i) Which chemical has a high pH?

Put a (ring) around the correct answer.

Α	В	С	D	[1]	1
				. .	

(ii) Which two solutions contain the same compound?

Put a (ring) around each correct answer.

(b) What ions are present in K_2SO_4 ?

Put (rings) around the correct ions.

 K^+ K_2^{2+} K^{2+} SO_4^{2-} S^{2-} O^{2-}

(c) Sodium hydroxide reacts with sulfuric acid to make a soluble salt.

Which of the following statements about the reaction are **true**, and which are **false**? Put ticks (\checkmark) in the correct boxes.

	true	false
The reaction produces a precipitate.		
The reaction is a neutralisation reaction.		
The acid produces OH^- ions.		
An equation for the reaction is $H^+ + OH^- \rightarrow H_2O$.		
Hydrogen gas is given off.		

[3]

[2]

[Total: 7]

END OF QUESTION PAPER

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2009

The Periodic Table of the Elements

				20				
0 4 He ^{helium}	20 Ne 10	40 Ar ^{argon} 18	84 Kr ^{krypton} 36	131 Xe xenon 54	[222] Rn radon 86	t fully		
7	19 F fluorine 9	35.5 Cl chlorine 17	80 Br ^{bromine} 35	127 iodine 53	[210] At ^{astatine} 85	rted but not		
Q	16 0 ^{oxygen} 8	32 S ^{sulfur} 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	mic numbers 112-116 have been repo authenticated		
ũ	14 N nitrogen 7	31 P phosphorus 15	75 As ^{arsenic} 33	122 Sb antimony 51	209 Bi bismuth 83			
4	12 C carbon 6	28 Si 14	73 Ge germanium 32	119 50 50	207 Pb tead 82			
m	11 B boron 5	27 Al aluminium 13	70 Ga ^{gallium} 31	115 In indium 49	204 TI thallium 81	nts with aton		
			65 Zn ^{zinc} 30	112 Cd cadmium 48	201 Hg ^{mercury} 80	Eleme		
			63.5 Cu copper 29	108 Ag aliver 47	197 Au 79	[272] Rg 111		
			59 Ni 28	106 Pd Palladium 46	195 Pt Platinum 78	[271] Ds ^{darmstadtum} 110		
			59 Co cobalt 27	103 Rh ^{rhodium} 45	192 Ir 77	[268] Mt 109		
hydrogen			56 Fe ^{tron} 26	101 Ru 44	190 Os osmium 76	[277] Hs ^{hassium} 108		
			55 Mn ^{manganese} 25	[98] Tc technetium 43	186 Re ^{rhenium} 75	[264] Bh ^{bohrium} 107		
	Key relative atomic mass atomic symbol atomic (proton) number		52 Cr chromium 24	96 Mo ^{molybdenum} 42	184 X 14 74	[266] Sg seaborgium 106		
Key			51 V vanadium 23	93 Nb 11 41	181 Ta tantalum 73	[262] Db ^{dubnium} 105		
			48 Ti 22	91 Zr zirconium 40	178 Hf 72 72	[261] Rf rutherfordium 104		
		-	45 Sc scandium 21	89 Yttrium 39	139 La* lanthanum 57	[227] Ac* ^{actinium} 89		
7	9 Be beryllium 4	24 Mg 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba ^{barium} 56	[226] Ra radium 88		
-	7 Li ^{lithium} 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr ^{francium} 87		

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

20