

GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE CHEMISTRY A

Unit 1 Modules C1 C2 C3 FOUNDATION TIER THURSDAY 21 JUNE 2007

A321/01

Afternoon

Calculators may be used. Additional materials: Pencil

Ruler (cm/mm)

Candidate	
Name	

Centre	
Numbe	r

	l .	l
	l .	l
		l
	l .	l
	l .	l
	l .	l
	l .	l

Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre Number and Candidate Number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Do not write in the bar code.
- Do **not** write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE				
Qu.	Max.	Mark		
1	9			
2	5			
3	9			
4	5			
5	8			
6	6			
TOTAL	42			

This document consists of 17 printed pages and 3 blank pages.

SP (NF) T45563/1 © OCR 2007 [R/103/3790] OCR is an exempt Charity **[Turn over**

Answer all the questions.

1 In February 2003 a traffic Congestion Charging Scheme (CCS) was introduced in London.

Drivers have to pay if their vehicles enter central London.

© iStockphoto.com / Andrew Hill

These tables show how the traffic and the air quality in central London changed from 2002 to 2003.

type of vehicle	change in distance travelled
cars	29% decrease
buses	20% increase
motorcycles	3% increase
lorries	11% decrease
taxis	13% increase

type of pollution	change in air quality
carbon dioxide	20% decrease
nitrogen dioxide	16% decrease
particulates	16% decrease

(a) (i) Which types of vehicles travelled **less** distance after the Congestion Charging Scheme (CCS) was introduced?

Put a (ring) around the **two** correct answers.

cars buses motorcycles lorries taxis

(ii)	Which of these statements describes how the air quality changed after the CCS was introduced?	
	Put a tick (✓) in the box next to the correct answer.	
	Carbon dioxide, nitrogen dioxide and particulates all increased.	
	Carbon dioxide decreased more than nitrogen dioxide and particulates.	
	Carbon dioxide increased but nitrogen dioxide and particulates decreased.	
	Carbon dioxide, nitrogen dioxide and particulates all decreased by the same amount.	
		[1]
(iii)	The data shows correlations between travel by some types of vehicles and air quality.	
	Complete this sentence to describe the correlation for one type of vehicle.	
	As the distance travelled by vehicles such as decreased,	
	the percentage of nitrogen oxides in the air	[2]
(iv)	The distance travelled by buses and taxis increased after CCS was introduced.	
	How may this have helped to reduce air pollution?	
	Put a tick (✓) in the box next to the best explanation.	
	Buses and taxis use less fuel per kilometre than cars.	
	Buses and taxis now travel a greater number of kilometres.	
	Buses and taxis carry more people in each vehicle than cars.	
	Buses and taxis do not give out carbon dioxide, nitrogen dioxide and particulates.	
		[1]

(b)	Carbon	dioxide	and nitrogen	oxides	produced	by vehicles	do not stay i	n the air.
-----	--------	---------	--------------	--------	----------	-------------	---------------	------------

Which of these statements describes one way that **both** of these gases are removed from the air?

Put a tick (\checkmark) in the box next to the correct answer.

They are both lost into space.	
They both dissolve in rain water.	
They are both deposited on surfaces, making them dirty.	

They are both used by plants in the process of photosynthesis.

[1]

(c) The main gases in non-polluted air are argon, nitrogen and oxygen.

Finish the table below to show the percentage of each of these gases in non-polluted air.

Write the name of each gas, argon, nitrogen or oxygen, next to its correct percentage.

name of gas	percentage
	78
	21
	1

[2]

[Total: 9]

BLANK PAGE

Question 2 starts on page 6

PLEASE DO NOT WRITE ON THIS PAGE

2 Many power stations burn natural gas to generate electricity.

© Powered by Light / Alan Spencer / Alamy

Natural gas contains methane, which is made of hydrogen and carbon atoms only.

(a) What scientific term can be used to describe a compound that is made of hydrogen and carbon atoms only?

Put a (ring) around the correct answer.

carbohydrate	hydrocarbon	hydroxide	polymer	
				[1]

(b) When methane burns completely in air, the hydrogen and carbon atoms combine with oxygen to form products.

Draw a straight line from each **atom** to the correct **product of complete combustion**.

atom	product of complete combustion
	carbon monoxide
carbon	carbon dioxide
	hydrogen peroxide
hydrogen	sodium hydrogencarbonate
	water

[2]

(c)	(i)	Fossil fuels such as natural gas and coal may contain sulfur.	
		When these fuels are burned, the sulfur reacts with oxygen to make sulfur dioxide.	
		Finish the diagram to show this reaction.	
			[1]
	(ii)	Sulfur dioxide is a pollutant gas released from power stations that burn fossil fuels.	
		It forms acid rain which corrodes buildings and statues.	
		How can the public help to reduce the amount of sulfur dioxide released from these power stations?	
		Put a tick (✓) in the box next to the correct answer.	
		People could use their cars less.	
		People could use electricity instead of gas to heat their homes.	
		People could turn down the gas central heating in their homes.	
		People could use less electricity by switching off appliances when they are not being used.	
			[1]
		[Total:	5]

3 Read this article about diabetes.

Number of diabetes cases rises

More than 2 million people in the UK now have diabetes. Experts blame the growing obesity problem for the increase in the number of people who have this condition. About 75% of all cases are type 2 diabetes and 25% are type 1.

More than 65% of men and 55% of women in the UK are overweight or obese, which is a major cause of type 2 diabetes. Experts blame an increase in obesity on the high levels of sugar and fat in the diets of many people.

There has been a large increase in the number of children with type 2 diabetes. Very few children had type 2 diabetes a decade ago.

Diabetes is a serious illness. People with diabetes must get the care and education they need because diabetes can lead to heart disease, strokes, kidney disease, amputations and blindness.

(a) The table gives information about the two types of diabetes.

Put ticks (\checkmark) in the correct boxes to show whether each of the statements best applies to type 1 **or** type 2 diabetes.

statement	type 1 diabetes	type 2 diabetes
controlled by insulin injections		
controlled by diet and exercise		
usually occurs in people over 50		
the body no longer responds to its own insulin		

[3]

[2]

(b)	Which chemicals in our food may be the cause of the increase in diabetes described in the article?						
	Put a ring around the two correct answers.						
		fat	fibre	minerals	protein	sugar	[0]
(c)	Give two ex	•	·	s that people with	diabetes may su	ffer.	[2]
	1						

2

(d)	Many people continue to eat a poor diet, despite the in	ncreased chance of getting diabetes.	
	Which statements offer reasons for why people are wi	illing to take this risk?	
	Put ticks (✓) in the boxes next to the two correct state	ements.	
	Most people are not overweight.		
	Diabetes is not a serious illness.		
	Most people will not get diabetes.		
	Poor diet does not cause diabetes.		
	Most people are not aware of how serious diabetes is.		2]

[Total: 9]

4 Sam and Zoe are shopping in a supermarket.

Sam looks at the ingredients on the label of a packet of 'instant' onion soup.

INGREDIENTS

Onion, starch, vegetable oil, emulsifier E471, flavour enhancer E621, preservative.

	flavour	enhancer	preservative	starch	vegetable oil	watei
	Put a ring a	around the two be	est answers.			
	Which subst	ances in the soup	are likely to separa	te if no emul	sifier is present?	
(ii)	When soup stops this ha		with hot water, the in	igredients ma	ay separate. The e	mulsifier
						[1]
	to stop	p microbes from (growing on the produ	uct		
	to give	e the product an a	attractive colour			
	to give	e the product a be	etter flavour			
	to ma	ke the product tas	ste sweeter			
	Put a tick (•	() in the box next	to the best answer.			
(a) (i)	What is the	job of the preser	vative in this product	?		

[2]

(b)	Zoe	e says	that they should	d buy fresh onior	s and use them	to make	soup.	
	She	e says	that this soup	will contain fewer	harmful additives	S.		
	(i)	Sam	says that additi	ves with an E nur	nber are safe to	eat.		
		Which	n of these state	ments suggests h	ne may be correc	t?		
		Put ti	cks in the boxes	s (✓) next to the t	wo best answers	S.		
			Additives with safety test.	an E number hav	re passed a			
			Additives with many years.	an E number hav	e been used for			
			Additives with use in the UK	an E number are and Europe.	approved for			
			Additives with people with for	an E number cau od allergies.	se problems for			
								[1]
	(ii)		ays that they sl ful chemicals.	nould buy organic	ally grown veget	ables be	cause these contain no	0
		She s	ays that other f	armers may use	pesticides that re	main in	the onions.	
		Orgar farme		not use pesticides	. What other che	micals a	re not used by organic	
		Put a	ring around th	ne two best answ	ers.			
			lime	manure	synthetic fer	tiliser	weedkiller	[4]
							r . .	[1]
							[l ot	al: 5]

5 Scientists working for a plastics company test samples of poly(ethene) to see how much they stretch before breaking.

They measure what percentage of the original length each sample will stretch to.

Their results are shown in the table.

sample	1	2	3	4	5	6	7
percentage (%)	237	293	243	242	238	239	241

(a) The scientists got a best estimate for the stretching of this poly(ethene) by working out the mean (average) of these results.

They did not include the result for sample 2 when they made this calculation.

(i)	What term can be used to describe the result for sample 2?

Put a (ring) around the correct answer.

	mean	optimum	outlier	range	
					[1]
(ii)	Why did the scientists not in	clude the result fo	r sample 2 in the	eir calculation of th	e mean?
	Put a tick (✓) in the box next	t to the best answ	er.		
	It is the highest value.				
	They only needed six r	results.			
	It is much higher than a	all of the other res	ults.		
	It is higher than the me	ean of the other res	sults.		
					[1]
(iii)	What is the mean (average)	of the other six re	sults?		
	Put a ring around the corre	ct answer.			
	237	240	248	293	

(iv)	The scientists measured the stretching of several san	nples rather than just one.
	They did this because they thought that it would lead percentage of stretching.	to a better estimate of the
	Why might this lead to a better estimate?	
	Put ticks (✓) in the boxes next to each of the two bes	t answers.
	Measurements can vary due to human error.	
	The scientists are learning how to take the measurements.	
	The more measurements that are made, the more accurate they are.	
	There may be small variations between	

[2]

(b) This poly(ethene) is used to make cling film.

© David N Lees

Cling film can be used to wrap up food such as sandwiches.

Before cling film was invented, sandwiches were usually put into paper bags.

(i) The Life Cycle Assessments (LCAs) for sandwich wrapping made from poly(ethene) and from paper are different.

Choose the two rows of information in this table that show why these LCAs are different.

Put ticks (✓) next to the **two** correct rows.

poly(ethene)	paper	tick (✓) two rows
used for the past 50 years	used for hundreds of years	
non-biodegradable	biodegradable	
stretches when pulled hard	breaks when pulled hard	
transparent	opaque	
made from crude oil	made from trees	

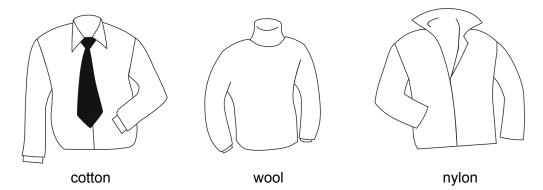
[2]

(ii) The poly(ethene) that is used to make cling film has a plasticizer added to it.

How does the plasticizer change the properties of poly(ethene)?

Finish the sentence by choosing the **best** word from this list.

darker	harder	softer	stronger	
The plasticizer makes the poly(ethene)		·	[1]


[Total: 8]

BLANK PAGE

Question 6 starts on page 16

PLEASE DO NOT WRITE ON THIS PAGE

6 A wide variety of fibres can be used to make clothes.

The table shows properties of some fibres, and the clothes made from them.

Each property has been scored from 0 (low) to 9 (high).

		property					
fibre	stretchiness	heat water insulation absorbance		strength	comfort when worn next to skin		
cotton	4	8	9	4	7		
PVC	9	2	0	8	1		
nylon	9	2	0	9	2		
silk	2	4	4	3	9		
wool	6	9	4	4	2		

(a)	Lo	Look at the table.				
	Wh	nich of the fibres are synthetic?				
		and	[2			
(b)	(i)	Suggest which fibre in the table would be the best choice for making clothes to keep warm in the winter.	you			
			[1]			
	(ii)	Which property of this fibre shows that it is a good choice for this use ?				
			[1]			

(c) Cotton is used to make underwear.				
Which statement best describes the advantage of cotton for this use?				
Put a tick (✓) in the box next to the correct answer.				
Cotton is very strong.				
Cotton will make you too hot.				
Cotton will absorb a lot of sweat.				
Cotton does not stretch very much.				
	[1]			
(d) Silk is a very expensive material. Cotton is a cheap	material.			
Some people pay a high price for silk underwear.				
Which statement gives the best reason for their cho	pice?			
Put a tick (✓) in the box next to the best answer.				
Cotton stretches more.				
Silk absorbs less water.				
Cotton gives more heat insulation.				
Silk is more comfortable next to the skin.				
	[1]			
	[Total: 6]			

END OF QUESTION PAPER

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Acknowledgements:

Q.1 image © iStockphoto.com / Andrew Hill

Q.2 image © Powered by Light / Alan Spencer / Alamy

Q.5 image © David N Lees

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

0	4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	t fully
_		19 F fluorine 9	35.5 Cl chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but no
9		16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po Polonium 84	ve been repo
2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	rs 112-116 hav authenticated
4		12 C carbon 6	28 Si siticon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82	mic numbers a
Ж		11 B boron 5	27 Al aluminium 13	70 Ga gallium 31	115 In indium 49	204 T1 thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
	·			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Eleme
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium
				59 Ni nicket 28	106 Pd palladium 46	195 Pt platinum 78	Ds damstadtium 110
				59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt meitnerium 109
	1 Hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
,				55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
		mass ool uumber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
	Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
		relati atc atomic		48 Ti ttanium 22	91 Zr zirconium 40	178 Hf hafinium 72	Rf rutherfordium 104
	·			45 Sc scandium 21	89 Y yttrium 39	139 La* lanthanum 57	[227] Ac* actinium 89
2		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
-		7 Li ^{Uthium} 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87
						_	

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.