Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

AQ/	
-----	--

General Certificate of Secondary Education Higher Tier June 2015

Chemistry
Unit Chemistry C3

CH3HP

Thursday 14 May 2015 9.00 am to 10.00 am

For this paper you must have:

- a ruler
- the Chemistry Data Sheet (enclosed).

You may use a calculator.

Time allowed

• 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- Question 4(b) should be answered in continuous prose.

In this question you will be marked on your ability to:

- use good English
- organise information clearly
- use specialist vocabulary where appropriate.

Advice

• In all calculations, show clearly how you work out your answer.

Examiner's Initials

Examine	rs miliais
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	

TOTAL

Answer a	all	questions	in	the	spaces	provided.
----------	-----	-----------	----	-----	--------	-----------

1 Figure 1 shows the positions of eight elements in the modern periodic table.

Figure 1

Group	1	2						3	4	5	6	7	0
	Li									Ν			
								Al					
	K				Fe		Cu			As		Br	

Choose the correct chemical symbols from Figure 1 to complete each sentence.

1 (a)	The two metals that react vigorously with water are	and
		[1 mark]

1 (d) Iron has ions with different charges.

The other metal that has ions with different charges is

[1 mark]

[1 mark]

Turn over for the next question

2	In 1866 Jo	ohn Newlands	produced a	n early version	on of the periodic	table.
---	------------	--------------	------------	-----------------	--------------------	--------

Part of Newlands' periodic table is shown in Figure 2.

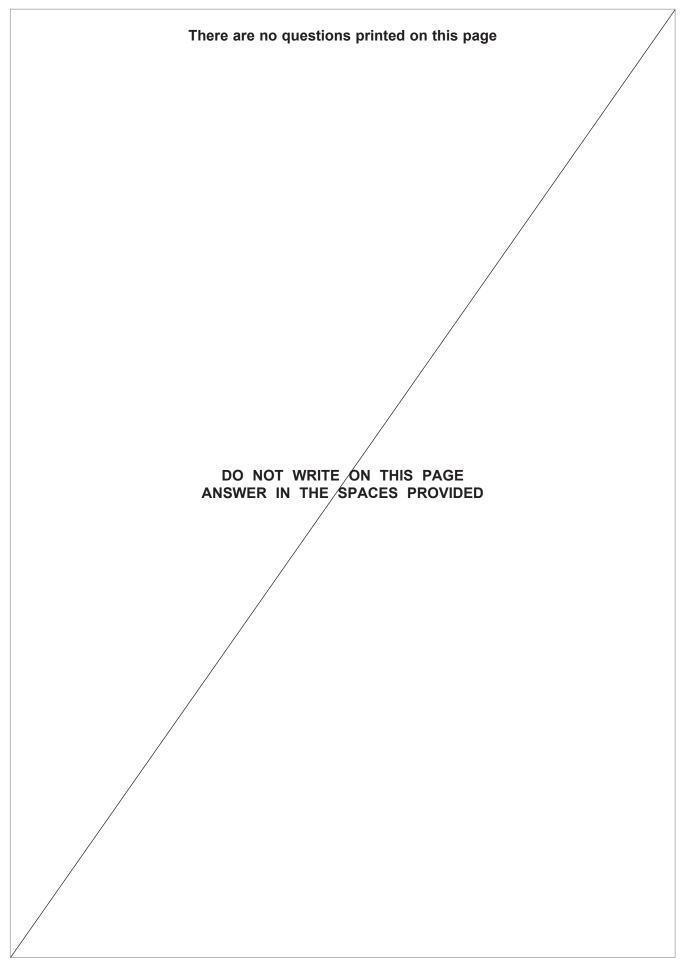
Figure 2

Column	1	2	3	4	5	6	7
	Н	Li	Ве	В	С	Ν	0
	F	Na	Mg	Al	Si	Р	S
	CI	K	Ca	Cr	Ti	Mn	Fe

Newlands' periodic table arranged all the known elements into columns in order of their atomic weight.

Newlands was trying to show a pattern by putting the elements into columns.

2 (a) Iron (Fe) does **not** fit the pattern in column 7.

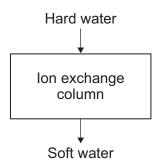

	Give a reason why.	[1 mark]
2 (b)	In 1869 Dmitri Mendeleev produced his version of the periodic table. Why did Mendeleev leave gaps for undiscovered elements in his periodic table.	
		[1 mark]

2 (c)	Newlands and Mendeleev placed the elements in order of atomic weight.
	Complete the sentence. [1 mark]
	The modern periodic table places the elements in order of
2 (d)	Lithium, sodium and potassium are all in Group 1 of the modern periodic table.
	Explain why. [2 marks]

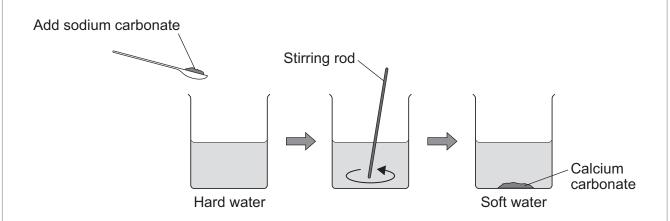
Turn over for the next question

3	This question is about the halogens (Group 7).	
3 (a)	How do the boiling points of the halogens change down the group from fluoring iodine?	ne to [1 mark]
3 (b)	Sodium bromide is produced by reacting sodium with bromine.	
	Sodium bromide is an ionic compound.	
3 (b) (i)	Write down the symbols of the two ions in sodium bromide.	[1 mark]
3 (b) (ii)	Chlorine reacts with sodium bromide solution to produce bromine and one off product.	ner
	Complete the word equation for the reaction.	[1 mark]
	chlorine + sodium bromide \longrightarrow bromine +	
3 (b) (iii)	Why does chlorine displace bromine from sodium bromide?	[1 mark]
3 (b) (iv)	Use the Chemistry Data Sheet to help you to answer this question.	
	Suggest which halogen could react with sodium chloride solution to produce of	chlorine. [1 mark]

Turn over for the next question


- **4** This question is about water.
- 4 (a) Rainwater is soft.

How is hard water produced from rainwater?	[2 marks]


4 (b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Hard water can be softened by two different methods.

Method 1: Ion exchange

Method 2: Adding sodium carbonate (washing soda)

	[0
Ex	tra space

8

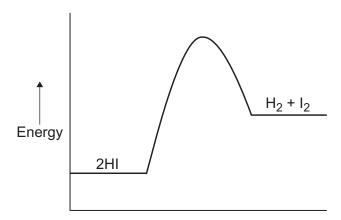
5	This question is about organic compounds.	
5 (a)	Ethanol is an alcohol. One use of ethanol is in alcoholic drinks.	
	Give two other uses of ethanol.	[2 marks]
5 (b)	Which gas is produced when sodium reacts with ethanol?	[1 mark]
	Tick (✓) one box.	
	Carbon dioxide	
	Carbon monoxide	
	Hydrogen	
	Oxygen	
5 (c)	Ethanoic acid (CH ₃ COOH) can be produced from ethanol (CH ₃ CH ₂ OH).	
5 (c) (i)	What type of reaction produces ethanoic acid from ethanol?	[1 mark]
5 (c) (ii)	Complete the displayed structure of ethanoic acid.	[1 mark]
	H — C — C — H	

5 (-) (!!!)		
5 (C) (III)	Solutions of ethanoic acid and hydrochloric acid with the same concentration had different pH values.	nave
	Explain why the solution of ethanoic acid has a higher pH than the solution of hydrochloric acid.	
	· ·	[2 marks]
5 (d)	Ethanol and ethanoic acid react in the presence of a catalyst to form an ester.	
3 (u)	Ethanor and ethanoic acid react in the presence of a catalyst to form an ester.	
5 (d) (i)	Name the ester made from ethanol and ethanoic acid.	[1 mark]
5 (d) (ii)	What type of chemical is used as a catalyst in this reaction?	[1 mark]
5 (d) (iii)	Esters are used in perfumes because they smell pleasant and are volatile.	
	What does volatile mean?	[1 mark]
		[· ···········]

Turn over for the next question

6	This question is about reversible reactions and chemical equilibrium.	
6 (a)	Reversible reactions can reach equilibrium in a closed system.	
6 (a) (i)	What is meant by a closed system?	[1 mark]
6 (a) (ii)	Explain why, when a reversible reaction reaches equilibrium, the reaction appel have stopped.	ars to 2 marks]

6 (b)	In the Haber process, the reaction of nitrogen with hydrogen to produce ammonia is reversible.				
	$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$				
6 (b) (i)	Name a natural resource from which hydrogen is produced. [1 mark]				
6 (b) (ii)	The Haber process uses a catalyst to speed up the reaction.				
	Explain how a catalyst speeds up a reaction. [2 marks]				
6 (b) (iii)	What happens to the amount of ammonia produced at equilibrium if the pressure is increased?				
	Give a reason for your answer. [2 marks]				
	Question 6 continues on the next page				


6 (c) The decomposition of hydrogen iodide into hydrogen and iodine is reversible.

$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$

The forward reaction is endothermic.

The energy level diagram in Figure 3 is for the forward reaction.

Figure 3

6 (c) (i) Draw an arrow to show the activation energy on the diagram in **Figure 3**.

[1 mark]

12

6 (c) (ii)	How does the diagram in Figure 3 show that the reaction is endothermic? [1 mark]
6 (c) (iii)	Suggest what effect, if any, increasing the temperature will have on the amount of hydrogen iodide at equilibrium.
	Give a reason for your answer. [2 marks]

Turn over for the next question

- 7 This question is about chemical analysis.
- 7 (a) A student has solutions of three compounds, X, Y and Z.

The student uses tests to identify the ions in the three compounds.

The student records the results of the tests in Table 1.

Table 1

	Test			
Compound	Flame test	Add sodium hydroxide solution	hydroxide acid and barium	
x	no colour	green precipitate	white precipitate	no reaction
Υ	yellow flame	no reaction	no reaction	yellow precipitate
z	no colour	brown precipitate	no reaction	cream precipitate

Identify the two	o ions prese	nt in each	compound, X	, Y	and Z .
-------------------------	--------------	------------	-------------	------------	----------------

[3	m	arl	KS

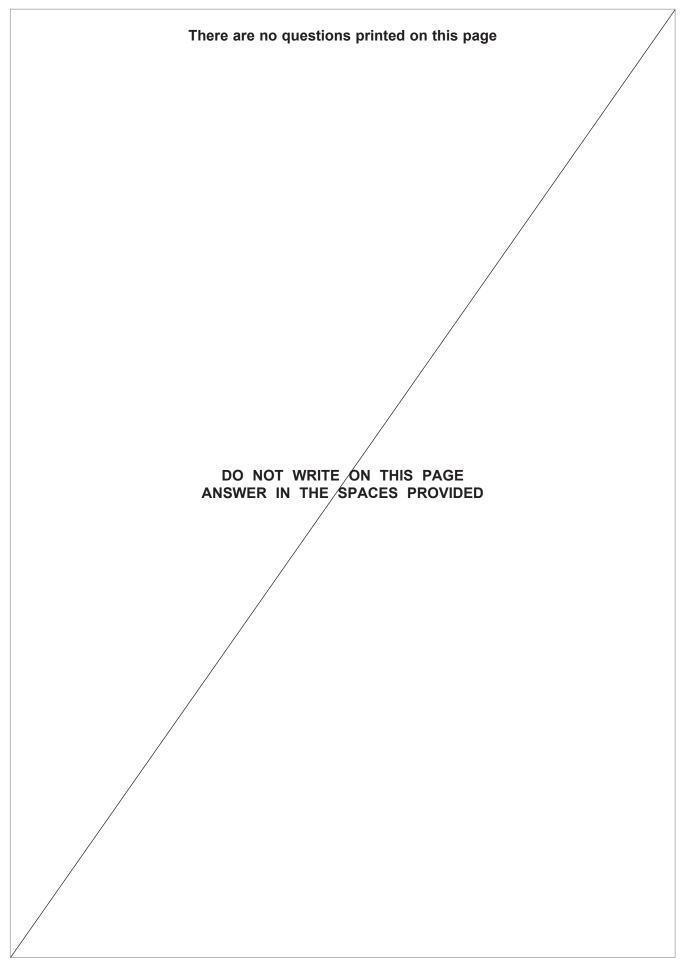
X	
Υ	
Z	

7 (b) A chemist needs to find the concentration of a solution of barium hydroxide. Barium hydroxide solution is an alkali.

The chemist could find the concentration of the barium hydroxide solution using two different methods.

Method 1

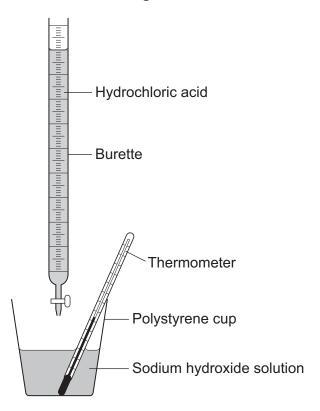
- An excess of sodium sulfate solution is added to 25 cm³ of the barium hydroxide solution. A precipitate of barium sulfate is formed.
- The precipitate of barium sulfate is filtered, dried and weighed.
- The concentration of the barium hydroxide solution is calculated from the mass of barium sulfate produced.


Method 2

- 25 cm³ of the barium hydroxide solution is titrated with hydrochloric acid of known concentration.
- The concentration of the barium hydroxide solution is calculated from the result of the titration.

Compare the advantages and disadvantages of the two methods. [5 marks	s]

Turn over for the next question



A student investigates the energy released when hydrochloric acid completely neutralises sodium hydroxide solution.

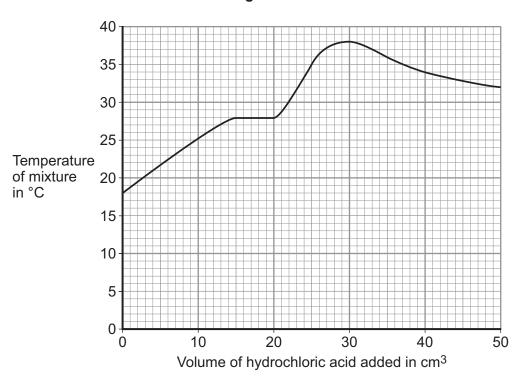
The student uses the apparatus shown in Figure 4.

Figure 4

The student:

- measures 25 cm³ sodium hydroxide solution into a polystyrene cup
- fills a burette with hydrochloric acid
- measures the temperature of the sodium hydroxide solution
- adds 5 cm³ hydrochloric acid to the sodium hydroxide solution in the polystyrene cup
- stirs the mixture and measures the highest temperature of the mixture
- continues to add 5 cm³ portions of hydrochloric acid, stirring and measuring the highest temperature of the mixture after each addition.

Question 8 continues on the next page



8 (a) The student has plotted a graph of the results.

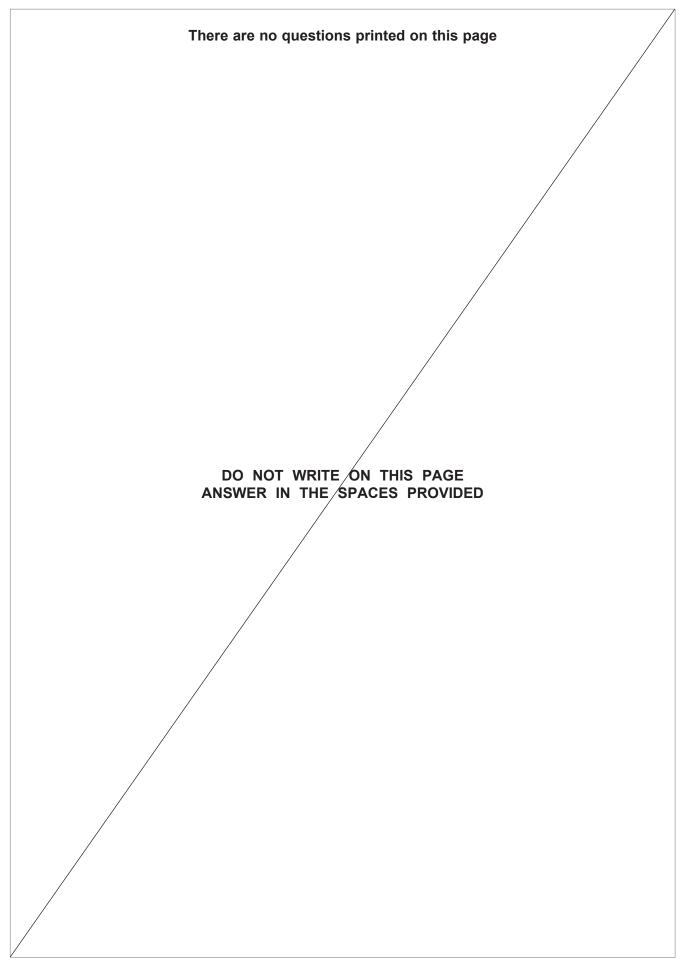
The graph line has been incorrectly drawn by including an anomalous result.

The graph is shown in **Figure 5**.

8 (a) (i)	Suggest a cause for the anomalous result when 20 cm ³ of hydrochloric acid is	added. [1 mark]
8 (a) (ii)	Suggest the true value of the temperature of the anomalous point.	[1 mark]
	Temperature =	°C
8 (a) (iii)	What was the total volume of the mixture when the maximum temperature was reached?	s [1 mark]

Total volume of the mixture = \dots cm³

8 (a) (iv)	Calculate the overall temperature increase in this experiment. [1 mark]
	Overall temperature increase =°C
8 (a) (v)	Use your answers to 8(a)(iii) and 8(a)(iv) and the equation to calculate the energy released in the reaction. Give the unit. [2 marks]
	Assume the volume in cm ³ is equivalent to the mass of solution in grams.
	Equation: $Q = mc\Delta T$
	where: $Q = \text{energy released}$ $m = \text{mass of solution (g)}$ $c = 4.2 \text{ (J per g per °C)}$ $\Delta T = \text{change in temperature (°C)}$
	Energy released = Unit =
8 (b)	The student did the experiment on page 19 again, starting with 50 cm ³ of sodium hydroxide solution instead of 25 cm ³ .
	Explain why this would make no difference to the overall temperature increase. [2 marks]


END OF QUESTIONS


8

