Surname					Other	Names			
Centre Number						Candidate Number			
Candidate s	ignatu	ire							

General Certificate of Secondary Education Specimen Paper

SCIENCE A Unit 1a Chemistry (Products from Rocks)

CHY1A

CHEMISTRY Unit 1a Chemistry (Products from Rocks)

Date and Time

For this paper you must have:

- a black ball-point pen
- an objective test answer sheet.

You may use a calculator.

Time allowed: 30 minutes

Instructions

- Fill in the boxes at the top of this page.
- Check that your name, candidate number and centre number are printed on the separate answer sheet.
- Check that the separate answer sheet has the title 'Products from Rocks' printed on it.
- Attempt one Tier only, either the Foundation Tier or the Higher Tier.
- Make sure that you use the correct side of the separate answer sheet; the Foundation Tier is printed on one side and the Higher Tier on the other.
- Answer all the questions for the Tier you are attempting.
- Record your answers on the separate answer sheet only.
- Do all rough work in this book, **not** on your answer sheet.

Instructions for recording answers

• Use a black ball-point pen.

•	For each answer completely fill in the circle as shown:	1 2 3 4
٠	Do not extend beyond the circles.	$\circ \bullet \circ \circ$
•	If you want to change your answer, you must cross out your original answer, as shown:	$\stackrel{1}{\circ}\overset{2}{\bigstar}\stackrel{3}{\circ}\overset{4}{\bullet}$
•	If you change your mind about an answer you have crossed out and now want to choose it, draw a ring around the cross as shown:	1 2 3 4

out and now want to choose it, draw a ring around the cross as shown: $\bigcirc \textcircled{} \bigcirc \textcircled{} \bigcirc \textcircled{}$

Information

• The maximum mark for this paper is 36.

Advice

- Do not choose more responses than you are asked to. You will lose marks if you do.
- Make sure that you hand in both your answer sheet and this question paper at the end of the test.
- If you start to answer on the wrong side of the answer sheet by mistake, make sure that you cross out **completely** the work that is not to be marked.

You must do **one Tier** only, **either** the Foundation tier **or** the Higher Tier. The Higher Tier starts on page 14 of this booklet.

FOUNDATION TIER

SECTION ONE

Questions **ONE** to **SIX**.

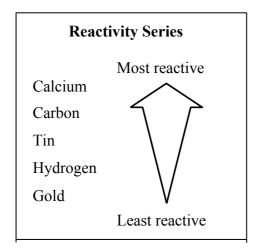
In these questions, match the letters, A, B, C and D, with the numbers 1 - 4.

Use each answer only once.

Mark your choices on the answer sheet.

QUESTION ONE

The table is about raw materials and substances made from them.


Match words, A, B, C and D, with the numbers 1 - 4 in the table.

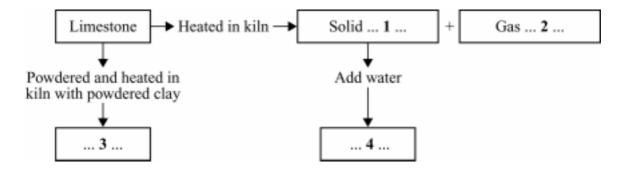
- A concrete
- **B** glass
- C limestone
- **D** slaked lime

Substance	What we can say about the substance						
1	it is made by heating together limestone, sand and soda						
2	it is made from cement and used as a building material						
3	it is made from quicklime and used to reduce the acidity of soils						
4	it is quarried rock used as building material						

QUESTION TWO

The diagram shows the reactivity of some elements.

Match words, A, B, C and D, with the numbers 1 - 4 in the table.

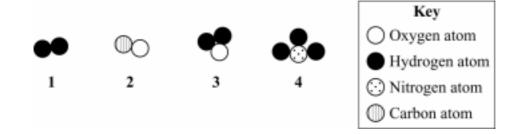

- A calcium
- **B** carbon
- C gold
- **D** tin

1	a metal that can be extracted from its ore by carbon but not by hydrogen							
2	a metal that cannot be extracted from its ore by using carbon							
3	a solid non-metal							
4	it may be found in the ground as the metal itself							

QUESTION THREE

The flow chart shows some of the substances that can be made from limestone. Match words, A, B, C and D, with the numbers 1 - 4 in the flow chart.

- A calcium hydroxide
- **B** calcium oxide
- C carbon dioxide
- D cement

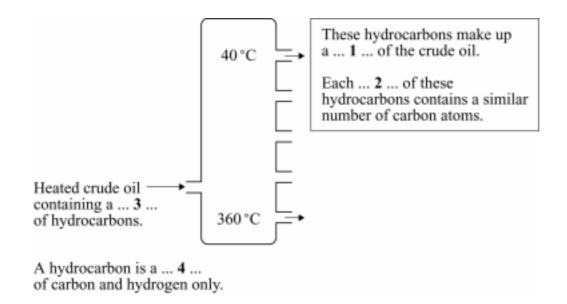


Specimen Paper CHY1A

QUESTION FOUR

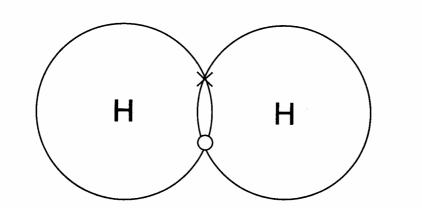
Atoms join to other atoms to form molecules. Match formulae, A, B, C and D, with the diagrams 1 - 4.

- A CO
- **B** H₂
- С Н₂О
- **D** NH₃



QUESTION FIVE

We can get useful products from crude oil.


Match words, A, B, C and D, with the labels 1 - 4 on the diagram.

- A compound
- **B** fraction
- C mixture
- D molecule

QUESTION SIX

The diagram shows a molecule of hydrogen.

Match words, A, B, C and D, with the numbers 1 - 4 in the sentences.

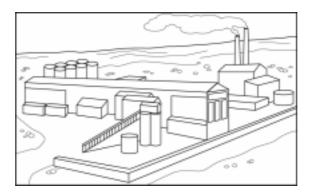
- A bond
- **B** electrons
- C molecule
- **D** nucleus

Each hydrogen atom has a small, central ... 1

The two hydrogen atoms each share ... 2

This sharing forms a chemical ... **3** ... between the two atoms.

The two joined atoms form a ... 4


SECTION TWO

Questions **SEVEN** to **NINE**. Each of these questions has four parts. In each part choose only **one** answer. Mark your choices on the answer sheet.

QUESTION SEVEN

Producing cement affects the environment.

The drawing shows a cement works next to a limestone quarry.

- 7A Quarrying limestone affects the environment at this site mainly by causing
 - 1 air pollution.
 - 2 land pollution.
 - 3 visual pollution.
 - 4 water pollution.

7B Producing cement in the kiln will produce ...

- 1 air pollution.
- 2 land pollution.
- 3 noise pollution.
- 4 water pollution.
- 7C Producing cement at this site uses . . .
 - 1 energy resources only.
 - 2 energy resources and renewable materials.
 - **3** energy sources and non-renewable materials.
 - 4 renewable materials only.
- 7D The cement is transported away from the works by a fleet of lorries.

The lorries cause mainly . . .

- **1** air pollution and land pollution.
- 2 air pollution and noise pollution.
- **3** air pollution and visual pollution.
- 4 air pollution and water pollution.

QUESTION EIGHT

Julie heated some limestone. The limestone decomposed to form calcium oxide and carbon dioxide. The limestone was weighed before and after being heated.

The table shows Julie's results.

	Experiment 1	Experiment 2
Mass of limestone before heating in grams	2.00	2.00
Mass of limestone after heating in grams	1.12	
Mass lost in grams	0.88	0.90

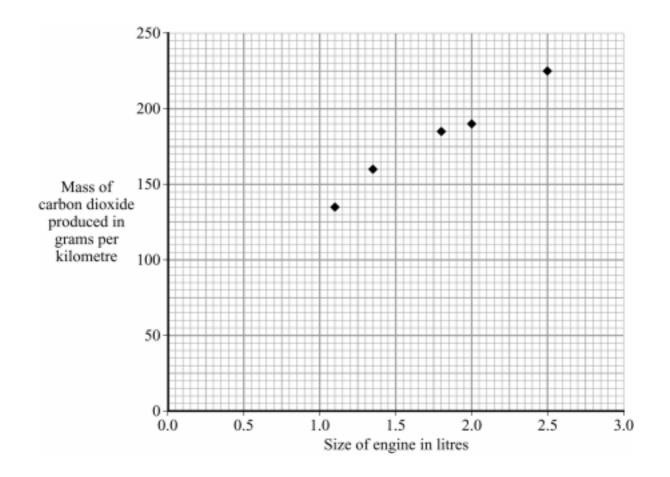
8A Which type of balance would be best for doing this experiment?

- 1 0 100 g measuring to the nearest 0.01 g
- 0 100 g measuring to the nearest 0.1 g
- 3 0-500 g measuring to the nearest g
- 4 0 1000 g measuring to the nearest 10 g

8B What was the mass of limestone after heating in Experiment 2?

- 1 0.88 g
- **2** 0.90 g
- **3** 1.10 g
- **4** 1.12 g

- 8C What mass of carbon dioxide was formed in Experiment 1?
 - 1 0.88 g
 - **2** 0.90 g
 - **3** 1.10 g
 - 4 1.12 g


8D What is the best conclusion to Julie's experiment?

- 1 Heating 2.00 g of limestone results in a loss in mass of 0.88 g.
- 2 Heating 2.00 g of limestone results in a loss in mass of 0.90 g.
- **3** Heating 2.00 g of limestone results in an average loss of 0.89 g.
- 4 Heating 2.00 g of limestone results in a different loss in mass each time.

QUESTION NINE

Most cars use either petrol or diesel as fuel.

The graph gives information about the mass of carbon dioxide produced by different sizes of petrol engine.

- **9A** What mass of carbon dioxide is produced by a car with a 2.0 litre petrol engine on a 10 km school run?
 - **1** 155 g
 - **2** 190 g
 - **3** 1900 g
 - 4 2350 g

- **9B** What is the best estimate of the mass of carbon dioxide that would be produced by a 1.0 litre petrol engine?
 - 1 60 grams per kilometre
 - 2 125 grams per kilometre
 - **3** 140 grams per kilometre
 - 4 170 grams per kilometre
- **9C** What is the relationship, if any, between petrol engine size and the mass of carbon dioxide produced?
 - **1** They are directly proportional.
 - 2 They are inversely proportional.
 - 3 There is a correlation between engine size and mass of carbon dioxide produced.
 - 4 There is no relationship between the two.
- **9D** A 2.0 litre diesel engine produces 156 grams of carbon per kilometre.

What is the best conclusion that can be drawn from this?

- 1 Diesel engines produce less carbon dioxide than petrol engines.
- 2 Petrol engines produce less carbon dioxide than diesel engines.
- 3 The mass of carbon dioxide produced by an engine depends on both the size of the engine and the type of fuel.
- 4 The mass of carbon dioxide produced by an engine depends only on the type of fuel.

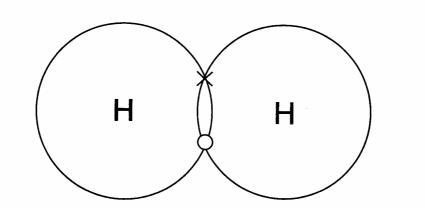
END OF TEST

You must do **one Tier** only, **either** the Foundation tier **or** the Higher Tier. The Foundation Tier is earlier in this booklet.

HIGHER TIER

SECTION ONE

Questions ONE and TWO


In these questions, match the letters, A, B, C and D, with the numbers 1 - 4.

Use each answer only once.

Mark your choices on the answer sheet.

QUESTION ONE

The diagram shows a molecule of hydrogen.

Match words, A, B, C and D, with the numbers 1 - 4 in the sentences.

- A bond
- **B** electrons
- C molecule
- **D** nucleus

Each hydrogen atom has a small, central . . . **1**

The two hydrogen atoms each share $\ldots 2 \ldots$.

This sharing forms a chemical ... 3 ... between the two atoms.

The two joined atoms form a ... 4

QUESTION TWO

Match words, A, B, C and D, with the numbers 1 - 4 in the sentences.

- A condense
- **B** evaporation
- **C** fractional distillation
- **D** fractions

The many hydrocarbons in crude oil may be separated into $\dots 1 \dots$, each of which contain molecules with a similar number of carbon atoms, by $\dots 2 \dots$ of the oil and allowing it to $\dots 3 \dots$ at a number of different temperatures. This process is called $\dots 4 \dots$

SECTION TWO

Questions THREE to NINE.

Each of these questions has four parts.

In each part choose only **one** answer.

Mark your choices on the answer sheet.

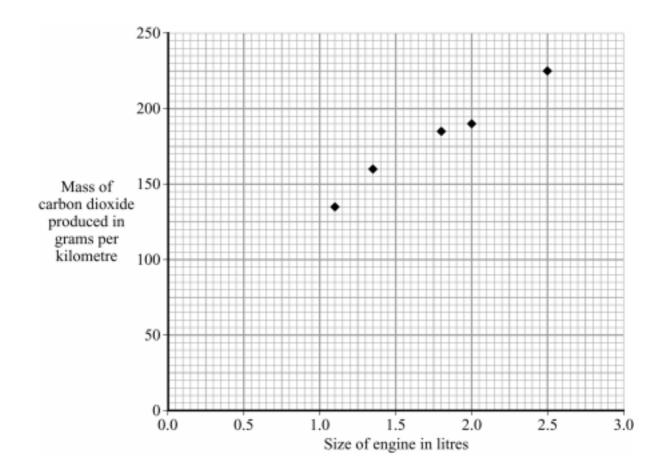
QUESTION THREE

Julie heated some limestone. The limestone decomposed to form calcium oxide and carbon dioxide. The limestone was weighed before and after being heated.

The table shows Julie's results.

	Experiment 1	Experiment 2
Mass of limestone before heating in grams	2.00	2.00
Mass of limestone after heating in grams	1.12	
Mass lost in grams	0.88	0.90

3A Which type of balance would be best for doing this experiment?


- 1 0 100 g measuring to the nearest 0.01 g
- 0 100 g measuring to the nearest 0.1 g
- 3 0-500 g measuring to the nearest g
- 4 0 1000 g measuring to the nearest 10 g
- **3B** What was the mass of limestone after heating in **Experiment 2**?
 - 1 0.88 g
 - **2** 0.90 g
 - **3** 1.10 g
 - **4** 1.12 g

- **3C** What mass of carbon dioxide was formed in **Experiment 1**?
 - 1 0.88 g
 - **2** 0.90 g
 - **3** 1.10 g
 - **4** 1.12 g
- **3D** What is the best conclusion to Julie's experiment?
 - 1 Heating 2.00 g of limestone results in a loss in mass of 0.88 g.
 - 2 Heating 2.00 g of limestone results in a loss in mass of 0.90 g.
 - **3** Heating 2.00 g of limestone results in an average loss of 0.89 g.
 - 4 Heating 2.00 g of limestone results in a different loss in mass each time.

QUESTION FOUR

Most cars use either petrol or diesel as fuel.

The graph gives information about the mass of carbon dioxide produced by different sizes of petrol engine.

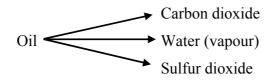
- **4A** What mass of carbon dioxide is produced by a car with a 2.0 litre petrol engine on a 10 km school run?
 - 1 155 g
 2 190 g
 - **3** 1900 g

 - **4** 2350 g

- **4B** What is the best estimate of the mass of carbon dioxide that would be produced by a 1.0 litre petrol engine?
 - 1 60 grams per kilometre
 - 2 125 grams per kilometre
 - **3** 140 grams per kilometre
 - 4 170 grams per kilometre
- **4C** What is the relationship, if any, between petrol engine size and the mass of carbon dioxide produced?
 - **1** They are directly proportional.
 - 2 They are inversely proportional.
 - 3 There is a correlation between engine size and mass of carbon dioxide produced.
 - 4 There is no relationship between the two.
- **4D** A 2.0 litre diesel engine produces 156 grams of carbon per kilometre.

What is the best conclusion that can be drawn from this?

- 1 Diesel engines produce less carbon dioxide than petrol engines.
- 2 Petrol engines produce less carbon dioxide than diesel engines.
- 3 The mass of carbon dioxide produced by an engine depends on both the size of the engine and the type of fuel.
- 4 The mass of carbon dioxide produced by an engine depends only on the type of fuel.


QUESTION FIVE

This question is about burning and the products of burning.

- 5A About 20 % of the air is ...
 - 1 carbon dioxide.
 - 2 nitrogen.
 - 3 oxygen.
 - 4 sulfur dioxide.

5B When carbon in a fuel burns in air the reaction can be represented by this word equation:

- 1 carbon + oxygen \rightarrow carbonic acid
- 2 carbon dioxide \rightarrow carbon + oxygen
- 3 carbon + oxygen \rightarrow carbon dioxide
- 4 carbon + oxygen \rightarrow calcium carbonate
- 5C These are the three main substances produced when most fuels are burned:

The products of these reactions are all

- 1 carbonates.
- 2 hydroxides.
- 3 oxides.
- 4 sulfides.

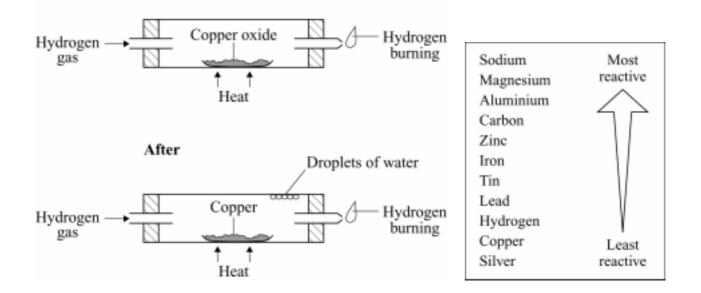
- **5D** Burning fuels release solid particles which . . .
 - 1 cause acid rain.
 - 2 cause global dimming.
 - **3** cause global warming.
 - 4 cause water pollution.

QUESTION SIX

Alloys often have more useful properties than pure metals.

- 6A Mixtures of metals are called . . .
 - **1** alloys.
 - 2 catalysts.
 - 3 compounds.
 - 4 ores.

6B One metal mixed with iron to make stainless steel is ...


- 1 aluminium.
- 2 calcium.
- 3 chromium.
- 4 potassium.
- 6C Low carbon steel is . . .
 - 1 easily shaped.
 - 2 hard.
 - **3** resistant to corrosion.
 - 4 resistant to staining.

6D Smart alloys . . .

- 1 can adapt to new situations.
- 2 can easily be bent.
- 3 can resist most chemicals.
- 4 can return to their original shape after being deformed.

QUESTION SEVEN

The drawings show how hydrogen can be used to displace a metal from one of its compounds.

Before

7A In the reaction shown, the hydrogen is ...

1 dehydrate	ed.
-------------	-----

- 2 neutralised.
- 3 oxidised.
- 4 reduced.
- **7B** The symbol equation for the reaction is . . .
 - $1 \qquad Cu + H_2 \qquad \rightarrow \ CuO$
 - $2 \qquad Cu + H_2 \quad \rightarrow \quad CuO + H_2O$
 - $\mathbf{3} \qquad \mathrm{CuO} + \mathrm{H}_2 \quad \rightarrow \quad \mathrm{Cu} + \mathrm{H}_2\mathrm{O}$
 - 4 $CuO + H_2O \rightarrow Cu + H_2$

7C Which of these metals could be displaced from its oxide by carbon but not by hydrogen?

- 1 aluminium
- 2 lead
- 3 magnesium
- 4 sodium
- 7D Which metal cannot be extracted from its oxide using carbon?
 - 1 copper
 - 2 sodium
 - 3 tin
 - 4 zinc

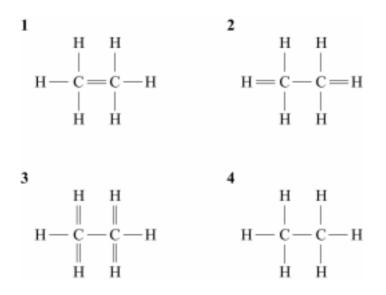
QUESTION EIGHT

Crude oil can be separated into fractions.

Each fraction contains several different hydrocarbons.

Fraction of crude oil	Number of carbon atoms in each hydrocarbon molecule
Petrol	$C_4 - C_{12}$
Paraffin	$C_{11} - C_{15}$
Diesel oil	$C_{14} - C_{19}$
Bitumen	C ₅₀ and upwards

8A Crude oil can be separated into fractions by fractional distillation because . . .


- 1 the fractions flow at different rates.
- 2 the fractions have different boiling points.
- **3** the fractions have different colours.
- 4 the fractions have different densities.

8B Hydrocarbons with the smallest molecules will be found in . . .

- 1 the bitumen fraction.
- 2 the diesel fraction.
- 3 the paraffin fraction.
- 4 the petrol fraction.

The formula for hydrocarbon \mathbf{X} is C_2H_6

8C The structural formula for hydrocarbon X is ...

- **8D** Which of these hydrocarbons belongs to the same group as hydrocarbon X?
 - 1 C₃H₈
 - **2** C₄H₈
 - **3** C₅H₁₀
 - **4** C₆H₁₂

QUESTION NINE

Read the information below about recycling metals.

Recycling scrap steel reduces related water pollution, air pollution and mining wastes by about 70%. It takes four times as much energy to make steel from iron ore than from recycled steel.

Recycling cans made from tin-plated steel saves 74% of the energy needed to produce these cans from raw materials. 80% of the tin is recovered from recycled cans.

Every time a tonne of steel is recycled, 2000kg of iron ore, 500kg of coal and 20kg of limestone are conserved.

The recycling process simply involves melting the scrap steel then removing impurities.

- 9A What mass of raw materials is preserved when one tonne of steel is recycled?
 - 1 20kg
 - **2** 500 kg
 - **3** 2000 kg
 - 4 2520kg
- 9B A tin-coated can has a mass of 10 g. 1% of this mass is tin.

How much tin is saved by the recycling of one tin can?

- 1 0.008 g
- **2** 0.08 g
- **3** 0.8 g
- 4 8.0g

- **9C** In the manufacture of iron, carbon is used to displace oxygen from iron oxide. Which pollutant gas is formed during this reaction?
 - 1 carbon dioxide
 - 2 nitrogen
 - 3 oxygen
 - 4 sulfur dioxide
- **9D** Recycling scrap needs much less energy than making steel from iron ore.

This is because . . .

- 1 iron in iron ore needs to be oxidised.
- 2 iron in scrap iron has already been displaced from its oxide.
- **3** iron in scrap iron only needs to be oxidised.
- 4 there are fewer impurities in scrap iron.

END OF TEST

Copyright $\ensuremath{\mathbb{C}}$ 2005 AQA and its licensors. All rights reserved

FOUNDATION TIER

Instructions on how to complete this answer sheet are given on the question paper. Please make sure you follow them carefully.

\bigcap			QUESTIC	ON ONE		1	2	3	4
Α	concrete					0	0	0	0
В	glass					0	0	0	0
С	limestone					0	0	0	0
D	slaked lime					0	0	0	0
\bigcap			QUESTIC	OW TWO		1	2	3	4
Α	calcium		QUEUNIO			0	0	0	0
в	carbon					0	0	0	0
С	gold					0	0	0	0
D	tin					0	0	0	0
			QUESTION		=	1	2	3	4
Α	calcium hydroxid	le	QUEUNIO		-	0		0	0
в	calcium oxide					0	0	0	0
С	carbon dioxide					0	0	0	0
D	cement					0	0	0	0
			QUESTIO			1	2	3	4
Α	СО		QUEUNO			0	0	0	0
в	H ₂					0	0	0	0
С	H ₂ O					0	0	0	0
D	NH_3					0	0	0	0)
			QUESTIC			1	2	3	4
Α	compound		QUESTIC			0	0	0	0
в	fraction					0	0	0	0
С	mixture					0	0	0	0
D	molecule					0	0	0	0)
			QUESTI			1	2	3	4
Α	bond		QUESTI	VIG NIC		0	-	0	4
в	electrons					0		0	0
С	molecule					0	0	0	0
D	nucleus					0	0	0	0)
	ON SEVEN		QUESTIO				QUES		
	2 3 4		1 2		4		20⊑3 1		2
		А	0		0	Α	0		
	0 0 0	В		0	0	в	0		
	0 0 0	С	0		0	С	0		D
		D				D	0		

For AQA Office Use Only

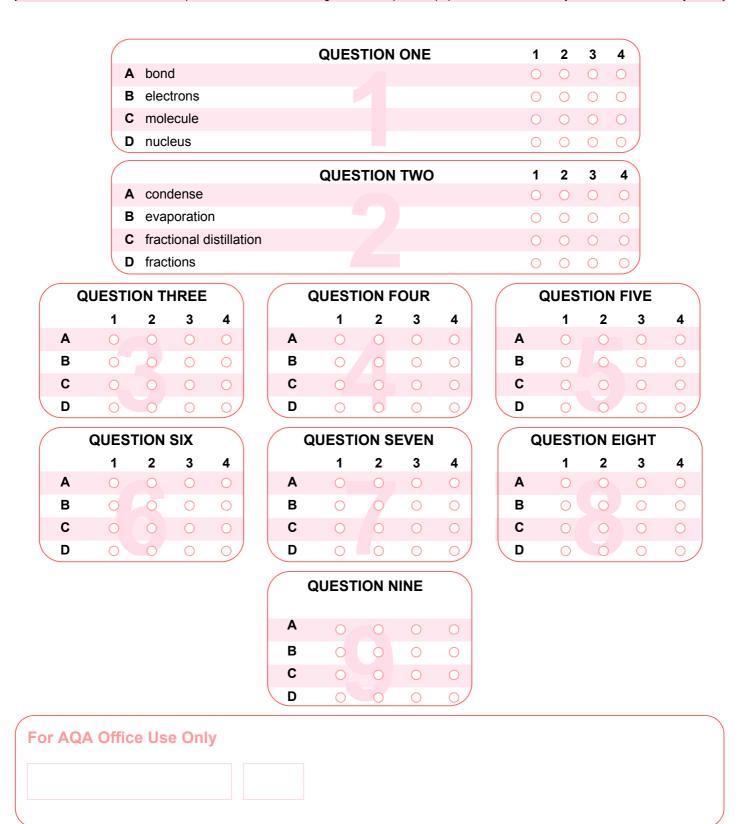
A B C D

GCSE SCIENCE

Unit : CHY1A – Chemistry 1a

Date/Series :

Centre : Candidate Number : Candidate Name :


UCI :

Candidate Name :

For completion by the Examination Invigilator. Please fill this oval if the candidate is absent:

HIGHER TIER

Instructions on how to complete this answer sheet are given on the question paper. Please make sure you follow them carefully.

GCSE

SCIENCE A (4461)/CHEMISTRY (4421)

Objective Test Answer Key

CHY1A (Products from Rocks)

Specimen Paper

Foundation Tier

Question				Key		
	Α	concrete		2		
	В	glass		1		
One	С	limestone		4		
	D	slaked lime		3		
	Α	calcium		2		
Two	В	carbon		3		
1 00	С	gold		4		
	D	tin		1		
	Α	calcium hydro		4		
Three	В	calcium oxide		1		
	С	carbon dioxide		2		
	D	cement		3		
	A	СО		2		
				2 1		
Four	B	H ₂				
	C	H ₂ O		3 4		
	D	NH ₃		4		
	Α	compound		4		
	В	fraction		1		
Five	С	mixture		3		
	D	molecule		2		
	Α	bond		3		
Six	В	electrons		2		
51X	С	molecule		4		
	D	nucleus		1		
	1					
	A		В		С	D
Seven	3		1		3	2
Eight	1		3		1	3
Nine		3	2		3	3

GCSE

SCIENCE A (4461)/CHEMISTRY (4421)

Objective Test Answer Key

CHY1A (Products from Rocks)

Specimen Paper

Higher Tier

Question				Ke	ÿ	
	Α	bond		3		
0.22	В	electrons		2		
One	С	molecule		4		
	D	nucleus		1		
	Α	condense		3		
Two	В	evaporation		2		
Iwo	С	fractional dis	tillation	4		
	D fractions		1			
					I	
		Α	В		С	D
Three		1	3		1	3
Four		3	2		3	3
Five		3	3		3	2
Six	1		3		1	4
Seven	3		3		2	2
Eight	2		4		4	1
Nine		4	2		1	2