

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Thursday 24 November 2005 Morning Session

In addition to this paper you will require:

- a black ball-point pen;
- an answer sheet.

You may use a calculator.

Time allowed: 30 minutes

Instructions

- Fill in the boxes at the top of this page.
- Check that your name, candidate number and centre number are printed on the separate answer sheet.
- Check that the separate answer sheet has the title "Aqueous and Organic Chemistry" printed on it.
- Attempt one Tier only, either the Foundation Tier or the Higher Tier.
- Make sure that you use the correct side of the separate answer sheet; the Foundation Tier is printed on one side and the Higher Tier on the other.
- Answer all the questions for the Tier you are attempting.
- Record your answers on the separate answer sheet only. Rough work may be done on the question paper.

Instructions for recording answers

- Use a black ball-point pen.
- For each answer completely fill in the circle as shown:

- Do not extend beyond the circles.
- If you want to change your answer, you must cross out your original answer, as shown:

- If you change your mind about an answer you have crossed out and now want to choose it, draw a ring around the cross as shown:

Information

- The maximum mark for this paper is 36 .

Advice

- Do not choose more responses than you are asked to. You will lose marks if you do.
- Make sure that you hand in both your answer sheet and this question paper at the end of the test.
- If you start to answer on the wrong side of the answer sheet by mistake, make sure that you cross out completely the work that is not to be marked.

You must do one Tier only, either the Foundation Tier or the Higher Tier.
The Higher Tier starts on page 14 of this booklet.

FOUNDATION TIER

SECTION A

Questions ONE to FIVE.
In these questions match the words in the list with the numbers.
Use each answer only once.
Mark your choices on the answer sheet.

QUESTION ONE

This question is about burning.
Match words from the list with the numbers $\mathbf{1 - 4}$ in the sentences.

carbon

carbon dioxide
carbon monoxide
hydrogen

All organic compounds burn, if there is plenty of air, to produce \qquad 1..... .

If there is insufficient air, then poisonous $2 \ldots$. . is produced. Sometimes solid particles of $3 \ldots$. . are formed.

Some organic compounds produce water when they burn because they contain 4

QUESTION TWO

This question is about ions.
Match words from the list with the numbers 1-4 in the table.
calcium ions (Ca^{2+})
hydrogen ions $\left(\mathbf{H}^{+}\right)$
hydroxide ions (OH^{-})
nitrate ions ($\mathrm{NO}_{3}{ }^{-}$)

Ions	What we can say about the ions
$\mathbf{1}$	they can come from artificial fertilisers
$\mathbf{2}$	they help to reduce heart illnesses
$\mathbf{3}$	they make solutions acid
$\mathbf{4}$	they make solutions alkaline

TURN OVER FOR THE NEXT QUESTION

QUESTION THREE

The diagram shows some sugar solution being fermented.

Match words from the list with the numbers $\mathbf{1 - 4}$ in the sentences.

air
 enzymes
 ethanol
 sugar

The yeast cells contain biological catalysts called
These catalysts help to break down the \qquad 2 \qquad
The products of the breakdown are carbon dioxide and 3
The fermentation lock prevents 4 from entering the fermentation vessel.

QUESTION FOUR

This question is about acids and alkalis.
Match words from the list with the numbers 1-4 in the table.

```
ammonia solution
citric acid solution
nitric acid solution
sodium hydroxide solution
```

Acid or alkali	What we can say about the substance
$\mathbf{1}$	it is a strong alkali
$\mathbf{2}$	it is a weak acid
$\mathbf{3}$	it is only partially ionised in water and has a pH of 11
$\mathbf{4}$	it reacts vigorously with many metals, forming nitrates

QUESTION FIVE

The diagram shows stages in the preparation of the salt, magnesium sulphate.
Match statements, P, Q, R and S, with the numbers 1-4 in the sequence.

P a concentrated solution of magnesium sulphate is left to cool in a basin

Q crystals of magnesium sulphate form in the basin
R excess magnesium is filtered off
S
pieces of magnesium are added to dilute sulphuric acid

SECTION B

Questions SIX and SEVEN.
In these questions choose the best two answers.
Do not choose more than two.
Mark your choices on the answer sheet.

QUESTION SIX

This question is about gases dissolved in water.
Which two statements are correct?
animals and plants that live in water need dissolved oxygen
carbon dioxide is insoluble in water
carbon monoxide dissolves in water to make carbonated water
chlorine dissolved in water kills bacteria
oxygen dissolves better in warm water than in cold water

QUESTION SEVEN

This question is about the water cycle.

Which two statements are correct?
rain water contains dissolved oxygen and carbon dioxide rain water contains dissolved solids which can make it hard
rain water dissolves most covalent compounds
rain water is always soft
rising water vapour condenses because the temperature rises

SECTION C

Questions EIGHT to TEN.

Each of these questions has four parts.
In each part choose only one answer.
Mark your choices on the answer sheet.

QUESTION EIGHT

The beakers contain dilute solutions of four different substances in water.

Beaker
J

Beaker
K

Sodium chloride solution

Calcium nitrate solution

Beaker
L

Potassium carbonate solution

Beaker
M

Magnesium nitrate solution
8.1 A sample of the solution from each beaker in turn is shaken with a few drops of soap solution.

A lather will be produced by the solutions from
A beakers \mathbf{J} and \mathbf{K}.
B beakers \mathbf{J} and \mathbf{L}.
C beakers \mathbf{K} and \mathbf{M}.
D beaker \mathbf{M} only.
8.2 Sodium carbonate solution is added to a sample of the solution from beaker \mathbf{K}.

What would you expect to see?
A A lather
B A scum
C A white precipitate
D Bubbles of gas released
8.3 A reaction takes place when sodium carbonate solution is added to a sample of solution from beaker \mathbf{M}. sodium carbonate + magnesium nitrate $\rightarrow \quad$ substance $\mathbf{X} \quad+\quad$ substance \mathbf{Y} What are substances \mathbf{X} and \mathbf{Y} ?

Substance X

A magnesium carbonate
B magnesium carbonate
C magnesium carbonate
D magnesium chloride

Substance \mathbf{Y}

sodium nitrate
sodium chloride
water
sodium hydroxide
8.4 A sample of solution from beaker \mathbf{M} is shaken with a few drops of soap solution.

What would you expect to see?
A A lather
B A scum
C A white precipitate
D Scale

QUESTION NINE

The graph shows the solubility curves of two substances, lead nitrate and ammonia gas.

9.1 How much lead nitrate will dissolve in 100 grams of water at $40^{\circ} \mathrm{C}$?

A $\quad 2 \mathrm{~g}$
B $\quad 30 \mathrm{~g}$
C $\quad 31 \mathrm{~g}$
D $\quad 78 \mathrm{~g}$
9.2 Which line best describes the changes in solubility as the temperature of the solution increases?

	Lead nitrate	Ammonia
A	increases	increases
B	increases	decreases
C	decreases	decreases
D	decreases	increases

9.3 Above what temperature does lead nitrate become more soluble than ammonia?

A $\quad 18{ }^{\circ} \mathrm{C}$
B $\quad 56^{\circ} \mathrm{C}$
C $\quad 62{ }^{\circ} \mathrm{C}$
D $90^{\circ} \mathrm{C}$
9.4 How much more ammonia gas dissolves at $0^{\circ} \mathrm{C}$ than at $100^{\circ} \mathrm{C}$ in each 100 g of water?

A $\quad 10 \mathrm{~g}$
B $\quad 84 \mathrm{~g}$
C $\quad 90 \mathrm{~g}$
D 94 g

QUESTION TEN

This question is about salts called chlorides.
10.1 A student is making a solution of the salt, zinc chloride, from a metal and a dilute acid. The student begins by adding the metal to the dilute acid a little at a time.

Which metal and dilute acid should the student use?

Metal
 Dilute acid

A iron
hydrochloric
B iron
sulphuric
C zinc
hydrochloric
D zinc
sulphuric

Lead chloride is an insoluble salt.
The student prepares this salt by adding a solution of sodium chloride to a solution of lead nitrate.

10.2 What will the student see when the two solutions are mixed?

A A clear solution of lead chloride
B A white precipitate of lead chloride
C A white precipitate of sodium nitrate
D Bubbles of hydrogen gas
10.3 The student can separate and collect the insoluble lead chloride by

A condensation.
B distillation.
C evaporation.
D filtration.
10.4 Which two substances could the student use to make the salt, anhydrous iron chloride?

A Iron + chlorine
B Iron + hydrochloric acid
C Iron hydroxide + hydrochloric acid
D Iron oxide + hydrochloric acid

You must do one Tier only, either the Foundation Tier or the Higher Tier.
The Foundation Tier is earlier in this booklet.

HIGHER TIER

SECTION A

Questions ONE and TWO.
In these questions match the words in the list with the numbers.
Use each answer only once.
Mark your choices on the answer sheet.

QUESTION ONE

The diagram shows stages in the preparation of the salt, magnesium sulphate.
Match statements, $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}, with the numbers 1-4 in the sequence.

P a concentrated solution of magnesium sulphate is left to cool in a basin
Q crystals of magnesium sulphate form in the basin
R excess magnesium is filtered off

S
pieces of magnesium are added to dilute sulphuric acid

QUESTION TWO

This question is about polymers.
Match words from the list with the numbers 1-4 in the sentences.
chloroethene
melamine
poly(ethene)
polyvinylchloride
. 1 molecules can be joined together by addition polymerisation.
The product is called . 2
$\ldots \ldots 3 \ldots$ is a polymer which contains only carbon and hydrogen atoms and which softens when it is heated.
$4 \ldots$. . . does not soften when heated, because cross links form between adjacent molecular chains.

SECTION B

Questions THREE and FOUR.
In these questions choose the best two answers.
Do not choose more than two.
Mark your choices on the answer sheet.

QUESTION THREE

This question is about the water cycle.
Which two statements are correct?
rain water contains dissolved oxygen and carbon dioxide rain water contains dissolved solids which can make it hard rain water dissolves most covalent compounds rain water is always soft rising water vapour condenses because the temperature rises

QUESTION FOUR

This question is about alkenes.

Which two statements are correct?
ethene has double bonds between carbon and hydrogen atoms
ethene will react with steam to produce ethanol
the alkenes are unsaturated hydrocarbons
the alkenes react with carboxylic acids to produce esters
the alkenes will not decolourise bromine water

NO QUESTIONS APPEAR ON THIS PAGE

SECTION C

Questions FIVE to TEN.
Each of these questions has four parts.
In each part choose only one answer.
Mark your choices on the answer sheet.

QUESTION FIVE

The beakers contain dilute solutions of four different substances in water.
Beaker

Beaker
K
Beaker
L
Beaker
M

Sodium chloride solution

Calcium nitrate solution

Potassium carbonate solution

Magnesium nitrate solution
5.1 A sample of the solution from each beaker in turn is shaken with a few drops of soap solution.

A lather will be produced by the solutions from
A beakers \mathbf{J} and \mathbf{K}.
B beakers \mathbf{J} and \mathbf{L}.
C beakers \mathbf{K} and \mathbf{M}.
D beaker \mathbf{M} only.
5.2 Sodium carbonate solution is added to a sample of the solution from beaker \mathbf{K}.

What would you expect to see?
A A lather
B A scum
C A white precipitate
D Bubbles of gas released
5.3 A reaction takes place when sodium carbonate solution is added to a sample of solution from beaker \mathbf{M}. sodium carbonate + magnesium nitrate $\rightarrow \quad$ substance $\mathbf{X} \quad+\quad$ substance \mathbf{Y} What are substances \mathbf{X} and \mathbf{Y} ?

Substance X

A magnesium carbonate
B magnesium carbonate
C magnesium carbonate
D magnesium chloride

Substance \mathbf{Y}

sodium nitrate
sodium chloride
water
sodium hydroxide
5.4 A sample of solution from Beaker \mathbf{M} is shaken with a few drops of soap solution.

What would you expect to see?
A A lather
B A scum
C A white precipitate
D Scale

QUESTION SIX

The graph shows the solubility curves of two substances, lead nitrate and ammonia gas.

6.1 How much lead nitrate will dissolve in 100 grams of water at $40^{\circ} \mathrm{C}$?

A $\quad 2 \mathrm{~g}$
B $\quad 30 \mathrm{~g}$
C $\quad 31 \mathrm{~g}$
D $\quad 78 \mathrm{~g}$
6.2 Which line best describes the changes in solubility as the temperature of the solution increases?

	Lead nitrate	Ammonia
A	increases	increases
B	increases	decreases
C	decreases	decreases
D	decreases	increases

6.3 Above what temperature does lead nitrate become more soluble than ammonia?

A $\quad 18^{\circ} \mathrm{C}$
B $\quad 56^{\circ} \mathrm{C}$
C $\quad 62^{\circ} \mathrm{C}$
D $90^{\circ} \mathrm{C}$
6.4 How much more ammonia gas dissolves at $0^{\circ} \mathrm{C}$ than at $100^{\circ} \mathrm{C}$ in each 100 g of water?

A $\quad 10 \mathrm{~g}$
B $\quad 84 \mathrm{~g}$
C $\quad 90 \mathrm{~g}$
D $\quad 94 \mathrm{~g}$

QUESTION SEVEN

This question is about salts called chlorides.
7.1 A student is making a solution of the salt, zinc chloride, from a metal and a dilute acid. The student begins by adding the metal to the dilute acid a little at a time.

Which metal and dilute acid should the student use?

Metal
 Dilute acid

A iron
hydrochloric
B iron
sulphuric
C zinc
hydrochloric
D zinc
sulphuric

Lead chloride is an insoluble salt.
The student prepares this salt by adding a solution of sodium chloride to a solution of lead nitrate.

7.2 What will the student see when the two solutions are mixed?

A A clear solution of lead chloride
B A white precipitate of lead chloride
C A white precipitate of sodium nitrate
D Bubbles of hydrogen gas
7.3 The student can separate and collect the insoluble lead chloride by

A condensation.
B distillation.
C evaporation.
D filtration.
7.4 Which two substances could the student use to make the salt, anhydrous iron chloride?

A Iron + chlorine
B Iron + hydrochloric acid
C Iron hydroxide + hydrochloric acid
D Iron oxide + hydrochloric acid

QUESTION EIGHT

The word equation shows how methanol reacts with ethanoic acid.
methanol + ethanoic acid \rightarrow methyl ethanoate + water
8.1 To which families of organic compounds do methanol and methyl ethanoate belong?

Methanol

A alcohols
B alcohols esters

C alkanes esters

D alkenes alcohols
8.2 Under what conditions does the reaction to produce methyl ethanoate take place?

A In aqueous solution, on warming
B When an oxidising agent is added
C When heated with sodium hydroxide solution
D With concentrated sulphuric acid catalyst
8.3 Ethanoic acid is a carboxylic acid.

What are the products when it reacts with sodium carbonate?
A Sodium hydroxide + carbon dioxide + water
B Sodium hydroxide + water
C Sodium salt + carbon dioxide + water
D Sodium salt + water
8.4 Which is the main carboxylic acid found in oranges and lemons?

A Citric acid
B Ethanoic acid
C Methanoic acid
D Propanoic acid

NO QUESTIONS APPEAR ON THIS PAGE

TURN OVER FOR THE NEXT QUESTION

QUESTION NINE

A chemist uses a 0.5 mol per dm^{3} solution of sodium hydroxide to find the concentration of an aqueous solution of hydrochloric acid. In a titration, $25 \mathrm{~cm}^{3}$ of the sodium hydroxide solution needs $20 \mathrm{~cm}^{3}$ of the hydrochloric acid for neutralisation.

This is the equation for the reaction

$$
\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

Relative atomic masses: $\mathrm{H}=1 ; \mathrm{O}=16 ; \mathrm{Na}=23 ; \mathrm{Cl}=35.5$
9.1 What mass of sodium hydroxide must be dissolved in $1 \mathrm{dm}^{3}$ of water to produce the 0.5 mol per dm^{3} solution?

A $\quad 10 \mathrm{~g}$
B $\quad 20 \mathrm{~g}$
C $\quad 40 \mathrm{~g}$
D 80 g
9.2 The concentration of the hydrochloric acid solution is

A $\quad 0.400 \mathrm{~mol}$ per dm^{3}
B $\quad 0.500 \mathrm{~mol}$ per dm^{3}
C $\quad 0.625 \mathrm{~mol}$ per dm^{3}
D $\quad 0.725 \mathrm{~mol}$ per dm^{3}
9.3 In another experiment, a 1.0 mol per dm^{3} solution of hydrochloric acid was used to neutralise $25 \mathrm{~cm}^{3}$ of a 0.5 mol per dm^{3} solution of sodium hydroxide.

What volume of the acid was needed?
A $\quad 12.5 \mathrm{~cm}^{3}$
B $\quad 25.0 \mathrm{~cm}^{3}$
C $\quad 37.5 \mathrm{~cm}^{3}$
D $\quad 50.0 \mathrm{~cm}^{3}$
9.4 What mass of hydrochloric acid is contained in $500 \mathrm{~cm}^{3}$ of a 1.0 mol per dm^{3} solution?

A $\quad 18.25 \mathrm{~g}$
B $\quad 36.50 \mathrm{~g}$
C $\quad 50.00 \mathrm{~g}$
D $\quad 68.25 \mathrm{~g}$

TURN OVER FOR THE NEXT QUESTION

QUESTION TEN

The diagram shows the two isomers of butane.

Butane

2-methylpropane
10.1 Which isomer will have the higher boiling point and why?

	Isomer	Reason
A	butane	longer chain length
B	butane	shorter chain length
C	2-methylpropane	longer chain length
D	2-methylpropane	shorter chain length

10.2 How many isomers does pentane have?

A 2

B 3

C 4

D 5
10.3 Butane can be made in the reaction shown below.

Substance F is

A hydrogen.

B oxygen.

C sulphuric acid.

D water.
10.4 Butane cannot undergo addition reactions because

A it does not have a carbon carbon double bond.

B its carbon carbon bonds are too strong.
C its carbon hydrogen bonds are too strong.
D its intermolecular forces are too strong.

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

