

CHEMISTRY (MODULAR)
 Aqueous and Organic Chemistry (Module 21)

346021

ASSESSMENTand
QUALIFICATIONS
ALLIANCE

Tuesday 24 June 2003 Morning Session

In addition to this paper you will require:

- an HB pencil and a rubber;
- an answer sheet.

You may use a calculator.

Time allowed: 30 minutes

Instructions

- Fill in the boxes at the top of this page.
- Check that your name, candidate number and centre number are printed on the separate answer sheet.
- Check that the separate answer sheet has the title "Aqueous and Organic Chemistry" printed on it.
- Attempt one Tier only, either the Foundation Tier or the Higher Tier.
- Answer all the questions for the Tier you are attempting.
- Make sure that you use the correct side of the separate answer sheet; the Foundation Tier is printed on one side and the Higher Tier on the other.
- Mark your responses on the separate answer sheet only. Rough work may be done on the question paper.
- Mark the best responses by using a thick pencil stroke to fill in the box. Use an HB pencil. Make sure the pencil stroke does not extend beyond the box. Do not use ink or ball-point pen. If you wish to change your answer, rub out your first answer completely.
See below.

Examples:

Information

- The maximum mark for this paper is 36 .

Advice

- Do not choose more responses than you are asked to. You will lose marks if you do.
- Make sure that you hand in both your answer sheet and this question paper at the end of the test.
- If you start to answer on the wrong side of the answer sheet by mistake, make sure that you rub out completely the work that is not to be marked.

You must do one Tier only, either the Foundation Tier or the Higher Tier.
The Higher Tier starts on page 12 of this booklet.

FOUNDATION TIER

SECTION A

Questions ONE to FIVE.
In these questions match the words in the list with the numbers.
Use each answer only once.
Mark your choices on the answer sheet.

QUESTION ONE

This question is about burning natural gas using a Bunsen burner.
Match words from the list with each of the numbers $\mathbf{1 - 4}$ in the sentences.

carbon
 carbon dioxide
 carbon monoxide
 hydrogen

When the air hole is open, the natural gas burns to produce water (vapour) and $1 \ldots$. . .
The water (vapour) is produced by oxidation of \qquad 2..... .

A yellow Bunsen burner flame contains particles of 3 3

If natural gas burns in a limited supply of air, poisonous $4 \ldots$. . is formed.

QUESTION TWO

This question is about four aqueous solutions of the same concentration.
Match words from the list with each of the numbers 1-4 in the table.
strong acid
strong alkali
weak acid
weak alkali

Solution	What we can say about the solution
$\mathbf{1}$	it is highly ionised and accepts protons
$\mathbf{2}$	it is highly ionised and donates protons
$\mathbf{3}$	it is partially ionised and accepts protons
$\mathbf{4}$	it is partially ionised and donates protons

QUESTION THREE

This question is about four substances that dissolve in water.
Match words from the list with each of the numbers 1-4 in the table.
ammonium nitrate
carbon dioxide
chlorine
oxygen

Substance	What we can say about the substance
$\mathbf{1}$	it is an artificial fertiliser
$\mathbf{2}$	it is needed for fish to survive in water
$\mathbf{3}$	it is released from a fizzy drink when the can is opened
$\mathbf{4}$	its solution in water will remove the colour from fabrics

QUESTION FOUR

The diagram shows stages in the preparation of the salt, calcium chloride.
Match statements $\mathbf{K}, \mathbf{L}, \mathbf{M}$ and \mathbf{N} from the list with each of the numbers $\mathbf{1 - 4}$ to explain how the salt can be made.

K bubbles of carbon dioxide gas start to be given off

L calcium carbonate added until no more will react

M solid calcium chloride
crystallises out
N some water evaporated from the solution of calcium chloride

QUESTION FIVE

This question is about fermentation.
Match words from the list with each of the numbers 1-4 in the sentences.

```
carbon dioxide
enzyme
ethanol
sugar
```

In the process of fermentation, yeast acts on a solution of \qquad 1

The yeast contains biological catalysts. A biological catalyst is an \qquad 2

A gas called $3 \ldots$.... is produced.
An organic compound that is found in alcoholic drinks is also produced.
This compound is called . $4 . .$. .

SECTION B

Questions SIX and SEVEN.
In these questions choose the best two answers.
Do not choose more than two.
Mark your choices on the answer sheet.

QUESTION SIX

This question is about water.
Which two of the following statements are correct?
chlorine is added to drinking water to make teeth stronger drinking water is passed through filter beds to remove bacteria on the Earth's surface, water vapour is formed by condensation of ocean water rain is produced when water vapour in clouds cools and condenses water in lakes is evaporated by heat from the Sun

QUESTION SEVEN

The table gives information about the solubility of oxygen in water.
Use this information and your knowledge of the solubility of gases to answer this question.

Temperature in ${ }^{\circ} \mathrm{C}$	0	10	20	30	40	50	60
Solubility in grams per 100 grams of water	0.007	0.0055	0.004	0.0035	0.003	0.0025	0.002

Which two of the following statements $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ and \mathbf{T} are correct?

P dissolved oxygen can make water hard
Q half as much oxygen will dissolve in 100 grams of water at $30^{\circ} \mathrm{C}$ than at $0^{\circ} \mathrm{C}$
R oxygen is more soluble in hot water than in cold water
S the solubility of oxygen in water increases as the pressure increases
T twice as much oxygen will dissolve in 100 grams of water at $60^{\circ} \mathrm{C}$ than at $20^{\circ} \mathrm{C}$
Turn over -

SECTION C

Questions EIGHT to TEN.

Each of these questions has four parts.
In each part choose only one answer.
Mark your choices on the answer sheet.

QUESTION EIGHT

The graph shows the solubility curve for copper sulphate.

Solubility in grams of copper sulphate per 100 grams of water

8.1 What mass of copper sulphate will dissolve in 100 grams of water at $60^{\circ} \mathrm{C}$?

A $\quad 38 \mathrm{~g}$
B $\quad 40 \mathrm{~g}$
C $\quad 42 \mathrm{~g}$
D $\quad 84 \mathrm{~g}$
8.2 What mass of copper sulphate will dissolve in 50 grams of water at $50^{\circ} \mathrm{C}$?

A $\quad 17 \mathrm{~g}$
B $\quad 32 \mathrm{~g}$
C $\quad 34 \mathrm{~g}$
D $\quad 37 \mathrm{~g}$
8.3 Which of the following will give a saturated solution in 100 grams of water?

A $\quad 22 \mathrm{~g}$ copper sulphate at $30^{\circ} \mathrm{C}$
B $\quad 29 \mathrm{~g}$ copper sulphate at $40^{\circ} \mathrm{C}$
C $\quad 40 \mathrm{~g}$ copper sulphate at $70^{\circ} \mathrm{C}$
D $\quad 60 \mathrm{~g}$ copper sulphate at $90^{\circ} \mathrm{C}$
8.4 What mass of copper sulphate will crystallise out from a saturated solution in 100 grams of water as it cools from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$?

A $\quad 20 \mathrm{~g}$
B $\quad 22 \mathrm{~g}$
C $\quad 54 \mathrm{~g}$
D $\quad 88 \mathrm{~g}$

QUESTION NINE

This question is about two salts of iron, iron sulphate and anhydrous iron chloride.
The flow diagram shows how we can make crystals of the salt, iron sulphate.

Excess iron added
a little at a time with stirring

9.1 Which acid is used to prepare iron sulphate?

A Citric acid

B Hydrochloric acid

C Nitric acid

D Sulphuric acid
9.2 The excess iron is removed from the solution of iron sulphate by

A condensation.

B crystallisation.

C distillation.
D filtration.
9.3 Anhydrous iron chloride is made by direct combination of elements. Which elements are used?

A Iron and chloride

B Iron and chlorine

C Iron and hydrochloric acid

D Iron, oxygen and chlorine
9.4 When making iron chloride, the elements are made to combine together by

A distillation.

B heating.
C precipitation.

D using a catalyst.

QUESTION TEN

The diagram shows the deposit inside a hot water pipe in the heating system of a house.
The deposits are a disadvantage because they make the system less efficient.

White deposit
10.1 The water supplied to the house has probably been collected from an area where the ground rocks contain.....

A artificial fertilisers.
B calcium compounds.
C organic compounds.
D sodium compounds.
10.2 A further disadvantage of this water is that.....

A it cannot be used for cooking.
B it increases tooth decay.
C it produces too much lather in the washing machine.
D it wastes a lot of soap before a lather is produced.
10.3 One advantage of using this water is that

A it boils below $100^{\circ} \mathrm{C}$.
B it can help to reduce heart disease.
C it does not contain dissolved oxygen.
D it does not form a scum with soap.
10.4 The water can be made softer by the addition of.....

A ammonium sulphate.
B chlorine.

C magnesium carbonate.
D sodium carbonate.

END OF TEST

You must do one Tier only, either the Foundation Tier or the Higher Tier.
The Foundation Tier is earlier in this booklet.

HIGHER TIER

SECTION A

Questions ONE and TWO.
In these questions match the words in the list with the numbers.
Use each answer only once.
Mark your choices on the answer sheet.

QUESTION ONE

This question is about fermentation.
Match words from the list with each of the numbers $\mathbf{1 - 4}$ in the sentences.

```
carbon dioxide
enzyme
ethanol
sugar
```

In the process of fermentation, yeast acts on a solution of \qquad 1. \qquad

The yeast contains biological catalysts. A biological catalyst is an \qquad 2. \qquad

A gas called 3 \qquad is produced.

An organic compound that is found in alcoholic drinks is also produced. This compound is called 4

QUESTION TWO

This question is about the families to which some chemical compounds belong.
Match words from the list with each of the numbers $\mathbf{1}-\mathbf{4}$ in the table.

cholesterol

ethyl ethanoate

pentane

vitamin C

Substance	Family of substances to which it belongs
$\mathbf{1}$	carboxylic acids
$\mathbf{2}$	alcohols
$\mathbf{3}$	alkanes
$\mathbf{4}$	esters

TURN OVER FOR THE NEXT QUESTION

SECTION B

Questions THREE and FOUR.
In these questions choose the best two answers.
Do not choose more than two.
Mark your choices on the answer sheet.

QUESTION THREE

The table gives information about the solubility of oxygen in water.
Use this information and your knowledge of the solubility of gases to answer this question.

Temperature in ${ }^{\circ} \mathrm{C}$	0	10	20	30	40	50	60
Solubility in grams per 100 grams of water	0.007	0.0055	0.004	0.0035	0.003	0.0025	0.002

Which two of the following statements $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ and \mathbf{T} are correct?

P dissolved oxygen can make water hard

Q half as much oxygen will dissolve in 100 grams of water at $30^{\circ} \mathrm{C}$ than at $0^{\circ} \mathrm{C}$
R oxygen is more soluble in hot water than in cold water
S the solubility of oxygen in water increases as the pressure increases
T twice as much oxygen will dissolve in 100 grams of water at $60^{\circ} \mathrm{C}$ than at $20^{\circ} \mathrm{C}$

QUESTION FOUR

This question is about polyvinylchloride, PVC.
Which two statements about polyvinylchloride are correct?
it can be remoulded after heating
it is a thermosetting polymer
it is made from the monomer, ethene
it produces fumes of hydrogen cyanide when it burns
its molecules have long chains of covalently bonded atoms

TURN OVER FOR THE NEXT QUESTION

SECTION C

Questions FIVE to TEN.
Each of these questions has four parts.
In each part choose only one answer.
Mark your choices on the answer sheet.

QUESTION FIVE

The graph shows the solubility curve for copper sulphate.

Solubility in grams of copper sulphate per 100 grams of water

5.1 What mass of copper sulphate will dissolve in 100 grams of water at $60^{\circ} \mathrm{C}$?

A $\quad 38 \mathrm{~g}$
B $\quad 40 \mathrm{~g}$
C $\quad 42 \mathrm{~g}$
D $\quad 84 \mathrm{~g}$
5.2 What mass of copper sulphate will dissolve in 50 grams of water at $50^{\circ} \mathrm{C}$?

A $\quad 17 \mathrm{~g}$
B $\quad 32 \mathrm{~g}$
C $\quad 34 \mathrm{~g}$
D $\quad 37 \mathrm{~g}$
5.3 Which of the following will give a saturated solution in 100 grams of water?

A $\quad 22 \mathrm{~g}$ copper sulphate at $30^{\circ} \mathrm{C}$
B $\quad 29 \mathrm{~g}$ copper sulphate at $40^{\circ} \mathrm{C}$
C $\quad 40 \mathrm{~g}$ copper sulphate at $70^{\circ} \mathrm{C}$
D $\quad 60 \mathrm{~g}$ copper sulphate at $90^{\circ} \mathrm{C}$
5.4 What mass of copper sulphate will crystallise out from a saturated solution in 100 grams of water as it cools from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$?

A $\quad 20 \mathrm{~g}$
B $\quad 22 \mathrm{~g}$
C $\quad 54 \mathrm{~g}$
D $\quad 88 \mathrm{~g}$

QUESTION SIX

This question is about two salts of iron, iron sulphate and anhydrous iron chloride.
The flow diagram shows how we can make crystals of the salt, iron sulphate.

Excess iron added
a little at a time with stirring

6.1 Which acid is used to prepare iron sulphate?

A Citric acid
B Hydrochloric acid
C Nitric acid
D Sulphuric acid
6.2 The excess iron is removed from the solution of iron sulphate by

A condensation.
B crystallisation.
C distillation.
D filtration.
6.3 Anhydrous iron chloride is made by direct combination of elements. Which elements are used?

A Iron and chloride
B Iron and chlorine
C Iron and hydrochloric acid
D Iron, oxygen and chlorine
6.4 When making iron chloride, the elements are made to combine together by

A distillation.
B heating.
C precipitation.
D using a catalyst.

QUESTION SEVEN

The diagram shows the deposit inside a hot water pipe in the heating system of a house.
The deposits are a disadvantage because they make the system less efficient.

White deposit
7.1 The water supplied to the house has probably been collected from an area where the ground rocks contain.....

A artificial fertilisers.
B calcium compounds.
C organic compounds.
D sodium compounds.
7.2 A further disadvantage of this water is that

A it cannot be used for cooking.
B it increases tooth decay.
C it produces too much lather in the washing machine.
D it wastes a lot of soap before a lather is produced.
7.3 One advantage of using this water is that

A it boils below $100^{\circ} \mathrm{C}$.
B it can help to reduce heart disease.
C it does not contain dissolved oxygen.
D it does not form a scum with soap.
7.4 The water can be made softer by the addition of

A ammonium sulphate.
B chlorine.

C magnesium carbonate.
D sodium carbonate.

TURN OVER FOR THE NEXT QUESTION

QUESTION EIGHT

Use the following information to help you to answer parts of this question.

$$
\text { Relative atomic masses: } \mathrm{H}=1 ; \quad \mathrm{O}=16 ; \quad \mathrm{Cl}=35.5 ; \quad \mathrm{K}=39
$$

$$
\mathrm{KOH}+\mathrm{HCl} \longrightarrow \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}
$$

A student prepares $500 \mathrm{~cm}^{3}$ of a solution of potassium hydroxide by dissolving 2.8 grams of potassium hydroxide in water.
8.1 The number of moles in 2.8 grams of potassium hydroxide is \qquad
A $\quad 0.02$

B 0.05

C 2.00
D $\quad 20.00$
8.2 The concentration of the potassium hydroxide solution is

A $\quad 0.02 \mathrm{~mol} \mathrm{dm}^{-3}$
B $\quad 0.05 \mathrm{~mol} \mathrm{dm}^{-3}$
C $\quad 0.10 \mathrm{~mol} \mathrm{dm}^{-3}$
D $\quad 1.00 \mathrm{~mol} \mathrm{dm}^{-3}$

In an experiment, the student finds that $25 \mathrm{~cm}^{3}$ of a $0.04 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of potassium hydroxide exactly reacts with $20 \mathrm{~cm}^{3}$ of a solution of hydrochloric acid.
8.3 What process did the student use to find this result?

A Decomposition
B Saturation
C Substitution

D Titration
8.4 The concentration of the hydrochloric acid solution used in this experiment is

A $\quad 0.032 \mathrm{~mol} \mathrm{dm}^{-3}$
B $\quad 0.05 \mathrm{~mol} \mathrm{dm}^{-3}$
C $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$
D $\quad 20.0 \mathrm{~mol} \mathrm{dm}^{-3}$

QUESTION NINE

The chemical formula for one molecule of a particular hydrocarbon is $\mathrm{C}_{2} \mathrm{H}_{4}$.
9.1 This hydrocarbon can be represented by the structural formula
A H

D

9.2 The homologous series to which this hydrocarbon belongs and the general formula for the series are

Homologous series

General formula for the series

A alkanes
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
B alkanes $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
C alkenes $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$

D alkenes $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
9.3 The equation shows how this hydrocarbon reacts with hydrogen.

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{\text { catalyst }} \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

What type of reaction is this and to which family of compounds does this product belong?

Type of reaction

A addition
B decomposition
C reduction
D substitution

Family

alkanes
alkenes
esters
alcohols
9.4 The equation shows how the hydrocarbon reacts with steam at high temperature and pressure.

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})
$$

To which family of compounds does this product belong?
A Acids
B Alcohols
C Alkanes
D Alkenes

QUESTION TEN

This question is about the alcohols and the carboxylic acids.
$\mathbf{1 0 . 1}$ sodium + ethanol \longrightarrow sodium ethoxide + substance \mathbf{X}
What is substance \mathbf{X} ?
A carbon dioxide
B carbon monoxide
C hydrogen
D water
10.2 Alcoholic drinks turn sour when the ethanol they contain is oxidised to

A ascorbic acid.
B citric acid.
C ethanoic acid.
D propanoic acid.
$10.3 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$
In this reaction, the substance produced along with the water is
A aspirin.
B cholesterol.
C ethyl ethanoate.
D methyl ethanoate.
10.4 A carboxylic acid will be neutralised by sodium hydroxide to form

A a salt and carbon dioxide.
B a salt and hydrogen.
C a salt and water.
D a salt only.

