

General Certificate of Secondary Education

Chemistry 3421/H Specification B

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Chemistry (Specification B) Higher Tier 3421/H

question	answers	extra information	mark
(a)	accurate plotting of points $(\pm \frac{1}{2} \text{ square})$	2 marks for all points	2
	(-/2 square)	1 mark for 3 or 4 points	
		accept if points cannot be seen and lines go through points	
	sensible attempt at a smooth curve	may not be perfect but do not accept joining the dots	1
		ignore any extension before first point do not accept multiple lines that cover more than one large square	
(b)(i)	75 seconds	accept answers correctly read from their graphs ($\pm \frac{1}{2}$ square)	1
		accept 73 to 77 without reference to graph	
(ii)	rate doubles (owtte)	accept time halves	1
		accept speed doubles	
		do not accept just gets faster etc.	
		do not accept the rate of reaction takes half the time	
(iii)	more particles (owtte)	n.b. they / them = particles	1
		accept molecules	
	more collisions	max 1 mark for any reference to particles moving faster / gaining energy	1
		ignore reference to 'react'	
total			7

question	answers	extra information	mark
(a)(i)	broken down (owtte)	accept big molecules to small molecules or production of smaller molecules	1
		do not accept separated	
		do not accept cracking / breaking down to elements	
		do not accept mention of oxygen	
		ignore decompose / decomposed	
	by heat / high temperature	(owtte)	1
(ii)	carbon dioxide	accept CO ₂	1
		do not accept CO^2 , Co_2 (apply halfway rule for O and ₂)	
(iii)	to mix the reactants (owtte)	accept to increase rate of reaction accept idea of movement accept 'so that the reactants are heated evenly' (owtte) accept to ensure complete reaction	1
(b)(i)	coke	accept carbon / C	1
		do not accept coal / charcoal	
	iron	accept Fe / pig iron / cast iron	1
		do not accept FE	
		ignore references to solid / molten etc.	
(ii)	oxygen removed (owtte)	accept gains electrons	1
		accept decrease in oxidation number / state	
		do not accept oxide removed	

Continued

question	answers	extra information	mark
(iii)	 for any sensible idea e.g. saves energy less waste (to dispose of) less CO₂ / pollution caused makes use of waste product / slag two products from one process saves money less limestone / clay needs to be obtained / used 	answers have to be chemically correct	1
	either explanation of the idea or another sensible idea	accept "environmentally friendly" as an explanation of a bullet	1
total			9

question	answers	extra information	mark
(a)	Science marks		3
	any three from:		
	• inert / unreactive	accept flooding (in India) by blocked drains	
	 not broken down / decomposed / non-biodegradable 	accept does not rot / decay / disintegrate	
		ignore erode and corrode	
	• by micro-organisms	must be linked to not broken-down	
	• causes litter	can be implied	
	• problems of waste disposal e.g. landfill		
	• difficult to recycle		
	• incineration / burning causes problems such as (air) pollution	must be linked to incineration	
	QoWC		
	1 mark which is awarded for the use of	annotate Q✓ or Q×	1
	one of the following scientific words.	word must be used in correct context	
	• (non-) biodegradable		
	• micro-organism / bacteria		
	• inert / unreactive		
	• decomposed		
	• toxic / poisonous	must be linked to air pollution	
(b)	any two from:	ignore cost / strength	2
	• plastic tar is harder (than ordinary tar)	ignore saving tar or bitumen	
	• plastic tar has better resistance to water penetration (than ordinary tar)	accept more waterproof	
	• plastic tar lasts longer (than ordinary tar)		
	• using plastic waste to make plastic tar means less has to be disposed of in other ways i.e. buried / burned	accept it causes less pollution	
	• plastic is recycled	accept makes use of a waste product	
total			6

question	answers	extra information	mark
(a)	152		2
		$56 + 32 + (4 \times 16)$ for 1 mark	
(b)	36.8%	accept 37% / 36.84% etc	2
		accept error carried forward from (a)	
		accept 36% for 1 mark	
		or	
		$56 / 152 \times 100 (56 / (a) \times 100)$ for 1 mark	
(c)	7.3 to 7.4	accept error carried forward from (b) e.g. $36 \rightarrow 7.2$	2
		$20 \times 36.84 / 100 (20 \times (b) / 100)$ for	
		1 mark	
total			6

question	answers	extra information	mark
(a)	any three sensible properties e.g.	they = transition elements	3
	transition elements are metals	ignore references to colours	
	TM high melting points / boiling points	ignore other chemical properties / reactivity	
	TM hard / strong	if point is not made for TM accept converse for halogens	
	TM conduct electricity	accept halogens are diatomic / molecular / covalent	
	TM conduct heat		
	TM sonorous	ignore halogens form covalent <u>compounds</u> / bonds	
	TM ductile	ignore electrons	
	TM malleable	ignore solid	
	TM high density		
	TM are catalysts		
	TM form positive ions		
(b)(i)	hydrogen forms a 1+ ion	accept form a positive ion	1
		accept one electron in outer shell	
(ii)	any one from:		1
	• can form 1– ion	accept form a negative ion	
	• forms diatomic molecule (owtte) or small molecule or molecular	ignore has covalent bonds	
	 (very) low boiling point/ melting point / gas 		
	• only needs one electron to fill outer shell		
	• non metal		
	• any other general property of non- metals		
total			5

question	answers	extra information	mark
	action by water running over the surface (owtte)	currents / waves / tides	1
		ignore action of wind	
	on a beach / mud flats / river / under water etc	any place where water may run over the sediment	1
		accept seabed	
		do not accept rock	
total			2

question	answers	extra information	mark
(a)(i)	2	accept multiples i.e. 2, 4, 2, 2	1
		any other numbers / symbols lose the mark	
(ii)	warm / heat acid / mixture	do not accept heat MgO	1
	add MgO or mix together acid and MgO		1
	until no more will react	accept dissolve	1
	filter (off excess MgO)		1
	QoWC mark: awarded for getting any two steps in the correct not necessarily consecutive order	annotate Q✓ or Q×	1
(b)(i)	magnesium / ions / it / they are <u>positive</u> / Mg ²⁺	accept magnesium ions / it / they gain electrons	1
	so are attracted / go / move to the negative electrode / cathode	from the negative electrode	1
(ii)	kill / destroy bacteria / microbes /	accept disinfect / sterilise	1
	gernis etc.	ignore purify / clean / get rid of bacteria	
		n.b. kills bacteria and removes impurities = 0 marks	
total			9

question	answers	extra information	mark
(a)(i)	water / aqueous	accept sugar solution	1
	yeast / enzyme / named enzyme	do not accept bacteria	1
	temperature in range 10 – 40 °C	accept warm / gentle heat / room temperature	1
		do not accept heat on its own	
	extra point / detail e.g. any one from:		1
	• exclusion of air / air lock or from diagram	accept anaerobic (respiration)	
	• exclude bacteria cotton wool plug / sterile conditions	accept cover solution	
	 leave until reaction complete / slows down / no more bubbles / a few days (2+) 	accept leave until next lesson	
	• filter / allow to settle and decant / yeast removed		
	• $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$	do not accept word equation	
	QoWC mark for linking any two correct statements	annotate Q✓ Q×	1
(ii)	carbon dioxide	CO ₂	1
		do not accept Co ₂ (apply half way rule)	
(b)(i)	fractional	fractionation / fractionating	1
		do not accept fraction	
(ii)	ethanol because it has the low <u>er</u> boiling point	comparison needed but it can be implied	1
		accept it boils at 78°C	
		accept ethanol is more volatile	
		do not accept ethanol is the first to boil / evaporate	
total			8

question	answers	extra information	mark
(a)(i)	water has dissolved (ions)	reference to soluble / solubility	1
		accept mark for leach	
		contact with rock is not sufficient	
	any one from:		1
	• rocks have different compositions	accept minerals for rocks (owtte)	
	 rocks different or rocks from different places / areas 	water from different sources is insufficient	
	• different time in contact with rocks		
	• different amounts of rock dissolve		
	• different temperatures at source / any variation in conditions e.g. pH		
(ii)	More calcium (ions) and magnesium (ions) (than the other)		1
(iii)	shake with / add soap (solution)	accept wash hands with soap	1
	scum / (white) precipitate / (white) solid or does not easily form a lather	result linked to first point	1
	solid of does not easily form a father	froth is insufficient	
		do not accept (lime)scale	
(b)	forms precipitate / solid / insoluble substance / carbonate	accept it reacts with calcium / magnesium / ions	1
	therefore removes calcium and/or magnesium (ions) or are no longer in solution	accept ions that cause hardness	1
(c)	e.g. strong bones / strong teeth (owtte)	less heart illness / disease	1
		accept good for bones / teeth	
		good for brewing / tanning	
		do not accept good for health / taste	
total			8

question	answers	extra information	mark
(a)	e.g. HCl gives hydrogen ions / H^+	$\mathrm{HCl} \rightarrow \mathrm{H}^{+} + \mathrm{Cl}^{-}$	1
		ignore proton donation	
	H^+ reacts with OH^- (from NaOH) (to form water)	$\mathrm{H}^+ + \mathrm{OH}^- \rightarrow \mathrm{H}_2\mathrm{O} = 2$ marks	1
	($H^+ + OH^- = 1$ mark	
(b)	any one from the following ideas:		1
	• no previously (proven) theory of ion formation		
	• no evidence / proof		
	 lack of communication / technology 	ignore he spoke a foreign language	
	• lack of information		
total			3

question	answers	extra information	mark
(a)	20000	accept 20 m ³ (must specify unit)	2
		$(100 / 0.9) \times 180$ gets 1 mark	
(b)(i)	full <u>outer</u> / <u>last</u> shell (of electrons) or 8 (electrons) in <u>outer</u> / <u>last</u> shell	accept energy level / ring / orbit for shell	1
		do not accept orbital	
	no need to gain / lose / share electrons	accept no need to form bonds (owtte)	1
		accept don't form ions	
(ii)	prevent oxidation / reaction with	accept reacts with air to form oxides	1
	oxygen etc. (owite)	do not accept air only	
		ignore reference to burning	
total			5

question	answers	extra information	mark
(a)(i)	catalyst / speed reaction (owtte)	accept lower activation energy	1
(ii)	 any two from: break down <u>large</u> molecules / hydrocarbons / alkanes / chains change <u>large</u> molecules into small molecules / hydrocarbons / alkanes / chains (into) more useful products or 		2
	 smaller molecules are more useful or greater demand for products / smaller molecules to give alkenes / petrol 	accept named short alkenes	
		do not accept petroleum	
(b)	X marked in the inverted test tube in the portion where gas has collected		1
(c)(i)	H H H H H H I I I I I H- C- C- C- C- I I I I I H+ H H H H	H H H do not accept condensed structures $ $ $ $ $ $ $ $ $ $ $C C C H$ $ $ H H H H $ $	1
(ii)	$ \begin{array}{c c} H & H \\ \hline \\ \hline \\ C = C \\ \hline \\ H & H \\ \end{array} $	ignore bond angles accept $CH_2 = CH_2$ $H_2C = CH_2$	1
total			6

question	answers	extra information	mark
(a)	enzyme / biological catalyst	accept catalyst	1
		accept protein	
(b)	it / enzyme / lactase is trapped / held / fixed (owtte)	accept cannot move	1
	in the resin / gel / (alginate) bead	accept inert solid	1
		do not accept column	
(c)	avoids losing the lactase / enzyme	accept doesn't have to be separated at end	1
		accept don't have to keep adding lactase	
		not left in the milk on its own	
	or helps to stabilise the enzyme / lactase	accept stops decomposition	
		accept it lasts longer or it can be used over and over again	
	or helps to allow the enzyme to withstand higher temperatures / wider range of pH		
(d)	does not have to be stopped after each batch or no breaks in production etc.	ignore same enzyme used for a long time	1
	or faster process / saves time / saves money	ignore faster reaction or more products or saves energy	
		ignore comments about purity	
	or less labour intensive		
total			5

question	answers	extra information	mark
(a)	2, 8, 8,1		1
(b)	they both have one electron in the outer shell / same number of electrons	accept ring / orbit for shell	1
	in <u>outer</u> shell	do not accept orbital for shell	
(c)		it = potassium	
		outer electron must be mentioned once for all 3 marks	
	outer shell electron further from nucleus or more shells	or converse argument for sodium less reactive provided sodium is specified assume it etc. means potassium	1
	less attraction to nucleus or more shielding		1
	outer electron more easily lost	not potassium reacts more easily	1
(d)	sodium	do not accept symbols or formulae	1
		accept sodium hydrogen (phosphate)	
	water		1
total			7

question	answers	extra information	mark
(a)		blast furnace max 4	
	$\mathbf{X} = \text{oxygen}$	O ₂	1
		air is insufficient	
	$\mathbf{Y} = $ calcium carbonate / limestone	CaCO ₃	1
	• One statement about redox	ignore references to sulphur	1
	 carbon is oxidised or carbon → CO₂ silicon oxidised or silicon → SiO₂ phosphorus is oxidised or phosphorus → phosphorus (pent) oxide 		
	 One statement about acid/base CaCO₃ / CaO is a base / alkali non-metal oxides are acidic CaO reacts with SiO₂ slag is formed 		1
	• One other statement about either redox or acid/base	e.g. a balanced equation	1
		n.b. $C + O_2 \rightarrow CO_2$ gains 2 marks	
(b)	0.155769	accept 0.15 to 0.16	2
		$45 \times \frac{18}{100}$ or 8.1	
		or their 8.1 gives 1 mark 5.2	
total			7

question	answers	extra information	mark
(a)	64 g	$2 \times (2 \times 16)$ for 1 mark	2
(b)(i)	(-) 730	ignore sign	3
		bonds broken 2736 kJ for 1 mark	
		bonds formed 3466 kJ for 1 mark	
		accept ecf	
(ii)	the energy given out in forming new bonds is more / greater / bigger than the energy needed to break existing bonds (owtte)		1
		energy needed to form new bonds is more than energy needed to break bonds = 0 marks	
(c)	incomplete combustion / not enough / less oxygen (owtte)	do not accept air for oxygen	1
		do not accept no oxygen	
total			7

question	answers	extra information	mark
(a)	any two from:		2
	 the gases / they are cooled or temperature goes down 		
	• the ammonia turns into a liquid	accept ammonia is liquified / condensed	
	• the nitrogen and hydrogen / others / remain as gases (owtte)	accept the others don't (liquefy)	
(b)	catalyst / make reaction faster / lower activation energy		1
(c)(i)	the reaction / it is <u>exothermic</u> / <u>gives</u> out heat (owtte)	accept $\triangle H$ is negative	1
		accept the reverse reaction is endothermic	
(ii)	reaction too slow at low temperatures or catalyst does not work at low temperatures or compromise between yield and rate (owtte) or does not provide sufficient energy to overcome the activation energy		1
total			5

questions	answers	extra information	mark
(a)(i)	$P_4 + 6 Cl_2 \rightarrow 4 PCl_3$	correct formulae (1 mark) correctly balanced (1 mark) (or multiples)	2
		$P + 1.5 \text{ Cl}_2 \rightarrow PCl_3 \text{ or}$ $4P + 6Cl_2 \rightarrow 4PCl_3 \text{ for } 1 \text{ mark}$	
(ii)	three bonding pairs and one lone pair on the P	circles not necessarily required	1
	6 unbonded electrons and a bonding pair around the three Cl		1
(iii)	liquid		1
(iv)	intermolecular bond or intermolecular forces or forces between molecules or Van de Waals forces		1
	weak (owtte)	dependant on first marking point	1
		bonds / attractive forces between atoms are weak = 0	
		ionic / covalent bonds are weak = 0	
		intramolecular bonds / forces are weak = 0	
(b)	Zn P	1 mark for mass / Ar	4
	$\begin{array}{cccc} 1.93703 & 0.02731 \\ = 0.03 & = 0.02 \\ 2 & 2 & 2 \\ \end{array}$	1 mark for proportions	
	Zn_3P_2	1 mark for correct whole number ratio	
		1 mark for correct formula accept P_2Zn_3	
		second or third step can be inferred if empirical formula is correct	
		if ratio upside down max is 2 marks	
total			11

question	answers	extra information	mark
(a)		must be a description of a titration no titration = no marks	
	NaOH in <u>burette</u>	do not accept biuret etc	1
	add NaOH until <u>indicator</u> changes (colour)	indicator must be mentioned in the account for this mark	1
		can be named acid-base indicator	
		colour change does not have to be correct	
		accept pH probe / indicator / paper	
	note (burette) volume used or final reading	accept 'work out the volume of NaOH added'	1
	accuracy: e.g. repeat	accept: white tile or	1
		dropwise / slowly (near end) or	
		white background or	
		swirling / mix or	
		read meniscus at eye level or	
		wash apparatus	
(b)	citric acid also present	another acid also present	1
(c)	3.2386×10^{-4} or any number from 3.2 to 3.24×10^{-4}	for 2 marks	2
	0 5.24 × 10	$\frac{0.0057}{176} \text{or} 3.2 \text{ to } 3.24 \times 10^{-5}$	
		their $3.2(4) \times 10^{-5} \times 10$ for 1 mark	
total			7

question	answers	extra information	mark
(a)	 any three from: Al³⁺: white precipitate / white solid dissolves (to give colourless solution) NH⁴₄: NH₃ / ammonia / alkaline gas 	conditional on white precipitate	3
	 which turns (damp) (red) litmus blue (not blue litmus) 	any suitable named indicator e.g. UI with consequential marking white fumes / smoke with concentrated HCl do not accept white gas	
total			3

question	answers	extra information	mark
(a)(i)	same (molecular) formula	accept both are C ₄ H ₁₀	1
		do not accept empirical formula	
	different structures or one is branched	atoms arranged differently or different structural formulae	1
(ii)	closer packing of molecules / particles	accept neater / easier packing	1
		accept more contact between molecules but not surface area on its own	
	stronger / more intermolecular forces / intermolecular bonds (owtte)	accept bonds between molecules harder to break	1
		ignore more energy needed to separate particles	
		any mention of ionic = 0 marks	
		many intermolecular forces is insufficient	
		any indication of covalent bonds breaking = 0 marks	
(b)	can only arrange the atoms one way (owtte)	e.g. hasn't got 4 or more carbon atoms	1
total			5

question	answers	extra information	mark
(a)(i)	computing / information technology / IT / ICT	accept electronics accept miniaturisation	1
		do not accept technology on its own	
(ii)	 any one from: fast / quick or comment about speed small amounts greater sensitivity / more accurate ease of automation greater versatility sample not used up more reliable 	ignore anything to do with cost accept any valid answer ignore human error accept operators do not need chemical skills	1
(b)(i)	electron / e ⁻ / e		1
(ii)	ethanoic (acid)	СН ₃ СООН	1
total			4