

GCSE

Chemistry

3421
Higher

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

HIGHER TIER 3421/H
 INFORMATION FOR EXAMINERS

1. General

The mark scheme for each question shows:

- the marks available for each part of the question;
- the total marks available for the question;
- the typical answer or answers which are expected;
- extra information to help the Examiner make his or her judgement and help to delineate what is acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a mark or marks may be awarded.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.

2. Emboldening

2.1 In a list of acceptable answers where more than one mark is available 'any two from' is used, with the number of marks emboldened. Each of the following lines is a potential mark.
2.2 A bold and is used to indicate that both parts of the answer are required to award the mark.
2.3 Alternative answers acceptable for a mark are indicated by the use of or. (Different terms in the mark scheme are shown by a/; e.g. allow smooth / free movement.)

3. Marking points

3.1 Marking of Quality of Written Communication

Examiners are reminded of the need to assess QoWC by the following statement appearing in the appropriate parts of the mark scheme:

The answer to this question requires ideas in good English in a sensible order with correct use of scientific terms. Quality of written communication should be considered in crediting points in the mark scheme.

The maximum marks available to a candidate whose answer is not well expressed will be (the number of marks available -1)

3.2 Marking of lists

This applies to questions requiring a set number of responses, but for which candidates have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.

Each error/contradiction negates each correct response. So, if the number of error/contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (indicated as * in example 1) are not penalised.
Example 1: What is the pH of an acidic solution? (1 mark)

Candidate	Response	Marks awarded
1	4,8	0
2	green, 5	0
3	red $^{*}, 5$	1
4	red $^{*}, 8$	0

Example 2: Name two planets in the solar system. (2 marks)

Candidate	Response	Marks awarded
1	Pluto, Mars, Moon	1
2	Pluto, Sun, Mars, Moon	0

3.3 Use of chemical symbols/formulae

If a candidate writes a chemical symbol/formula instead of a required chemical name, full credit can be given if the symbol/formula is correct and if, in the context of the question, such action is appropriate.

3.4 The marking of quantitative relationships

Full credit can be given for a correct quantitative relationship expressed in:

- named units;
- physical quantities;
- standard symbols;
- a combination of physical quantities and units.

No credit can be given for any quantitative relationship expressed in terms of:

- a combination of physical quantities, units and symbols;
- a diagram, e.g. the ohm's law triangle, unless the rest of the answer shows clearly that the candidate understands the relationships involved.

3.5 Marking procedure for calculations

3.5.1 Full marks can be given for a correct numerical answer, as shown in the column 'answers', without any working shown. However, if the answer is incorrect, mark(s) can be gained by correct substitution/working and this is shown in the 'extra information' column.
3.5.2 Where calculations are based on incorrectly recalled relationships, neither the incorrectly recalled relationship, nor the resulting calculation based on the incorrect relationship, will be credited.

3.6 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.7 Errors carried forward

There should be no error carried forward from a previous answer which has been based on wrong science. Any error in the answers to a structured question should be penalised once only.

Examples
(a) A candidate who calculates average speed using speed = time/distance and then proceeds to use this incorrect answer to calculate an acceleration based on the correct quantitative relationship should be given credit for the use of the correct acceleration relationship but none for either numerical answer.
(b) A candidate who incorrectly calculates average speed using speed $=$ distance/time and then proceeds to use this incorrect value to calculate an acceleration based on the correct quantitative relationship, should be given credit for the use of both correct quantitative relationships and for the correct substitution and use of the incorrect value in the calculation of the rate of acceleration.

Papers should be constructed in such a way that the number of times errors can be carried forward are kept to a minimum. Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation e.c.f. in the marking scheme.

3.8 Phonetic spelling

The phonetic spelling of correct scientific terminology should be credited unless there is a possible confusion with another technical term.

3.9 Brackets

(....) is used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.10 Unexpected Correct Answers not in the Mark Scheme

The Examiner should use professional judgement to award credit where a candidate has given an unexpected correct answer which is not covered by the mark scheme. The Examiner should consult with the Team Leader to confirm the judgement. The Team Leader should pass this answer on to the Principal Examiner with a view to informing all examiners.

GCSE Chemistry
Higher Tier 3421/H

3421/H Q1

question	answers	extra information	mark
(a)(i)	accurate plotting of points ($\pm \frac{1}{2}$ square) sensible smooth curve	2 marks for all points 1 mark for 3 or 4 points reasonable attempt do not accept double lines or dot to dot	2
(ii)	accurately read from their graph to $\pm \frac{1}{2}$ square		1
(b)(i)	(as temperature increases) rate increases	accept speeds up, gets faster, gets quicker accept higher speed do not accept gets bigger / higher unqualified do not accept answers about time on its own	1
(ii)	Quality of written communication The answer to this question requires ideas in good English in a sensible order with correct use of scientific terms. Quality of written communication should be considered in crediting points in the mark scheme. any three from: particles have more energy particles move faster more collisions more energetic / successful / harder collisions	maximum 2 marks if ideas not expressed well for converse maximum 2 marks higher kinetic energy do not accept move more or vibrate more accept greater rate of collisions more particles have activation energy	3
(c)	concentration (of solutions) or volume (of solutions)	accept 'how much of' accept references to intensity of colour accept same endpoint accept rate of stirring / shaking do not accept reference to solids or catalysts etc ignore containers do not accept pH	1
total			9

3421/H Q2

question	answers	extra information	mark
(a)(i)	5(\%)		1
(ii)	0.35	$\frac{5}{100} \times 7$ for 1 mark	2
(b)(i)	reduction	accept (it's) reduced do not accept redox / deoxidation	1
(ii)	heat with / reduce / react with or (chemical) reaction with a metal / element / substance higher in reactivity or electrolysis: molten electrolysis	ignore displace accept higher named elements or symbol accept carbon monoxide / coal / coke correct word equation for $\mathbf{2}$ marks correct formulas for $\mathbf{1}$ mark correct balanced symbol equation for 2 marks	1 1
total			6

3421/H Q3

question	answers	extra information	mark
(a)	magnesium is higher in reactivity (than iron) or Mg is more reactive (than Fe)	must be a comparison do not accept Mg corrodes faster (than Fe)	1
magnesium corrodes / reacts / loses electrons instead (of iron)	sacrificial idea do not accept magnesium 'rusts' instead of iron	1	
sensible answers such as:	difficult to repair / paint or replace a long underground pipe or easier to replace magnesium or easier to carry out inspections	accept to stop pipes corroding causing leaks accept idea of cost of replacing pipe	1

3421/H Q4

question	answers	extra information	mark
(a)	coke / carbon / C hot air slag / calcium silicate / CaSiO_{3}	do not accept coal do not accept oxygen	1 1 1
(b)(i)	23	accept correct multiples do not accept any added different chemicals	1
(ii)	iron oxide or $\mathrm{Fe}_{2} \mathrm{O}_{3} /$ iron (III) oxide	ignore iron ore / haematite do not accept iron (II) oxide do not accept Fe^{3+}	1
(c)(i)	160	ignore units $(2 \times 56)+(3 \times 16)$ for 1 mark	2
(ii)	70	$\frac{2 \times 56}{160}(\times 100)$ for 1 mark allow ecf from part (i)	2
(iii)	700	allow ecf from part (ii)	1
total			10

3421/H Q5

question	answers	extra information	mark
(a)	any three from: less / little / not much carbon dioxide or give a $\%$ age $<1 \%$ more / a lot of nitrogen or give 78-80\% (more) / (some) oxygen or give a \%age 20-21\% references to pollutant gases in general or named examples more / some water (vapour) some / 1\% argon ozone (layer) on earth	accept reverse answers if unambiguous do not accept just different throughout do not accept more "other gases" e.g. $\mathrm{CO}, \mathrm{SO}_{2}, \mathrm{NO}, \mathrm{NOX}$ etc. ignore other noble gases	3
(b)	any two from: removed carbon dioxide released oxygen caused carbon from carbon dioxide to become locked in sedimentary rocks the oxygen they produced reacted with methane and ammonia produced nitrogen (must be linked to fourth point)	ignore reference to respiration / photosynthesis unless qualified accept correct word / symbol equation for photosynthesis for 2 marks converted / changed CO_{2} to oxygen for 2 marks	2
total			5

3421/H Q6

\begin{tabular}{|c|c|c|c|}
\hline question \& answers \& extra information \& mark \\
\hline (a) \& bonding pair in the overlap and 6 other electrons arranged around the chlorine
\[
\begin{array}{lcccc}
\& \mathrm{xx} \& \& \& \\
\mathrm{x} \& \mathrm{Cl} \& \mathrm{x} \& \mathrm{H} \& \\
\mathrm{x} \& \mathrm{Cl} \& \mathrm{x} \& \mathrm{~V} \&
\end{array}
\] \& \begin{tabular}{l}
must have either circles or symbols \\
need not be pairs but must not be in the overlap region accept without H and Cl if clear accept all x's or all o's
\[
\times
\]
\end{tabular} \& 1 \\
\hline (b) \& \[
\mathrm{H}_{2}+\mathrm{Cl}_{2} \quad \rightarrow \quad 2 \mathrm{HCl}
\] \& \begin{tabular}{l}
accept multiples or fractions accept correct formulae but not balanced for \(\mathbf{1}\) mark \\
correctly balanced equation containing 'correct' lower / upper case symbols gets 1 mark \\
e.g. \(\mathrm{h}_{2}+\mathrm{cl}_{2} \rightarrow 2 \mathrm{HCL}\)
\end{tabular} \& 2 \\
\hline (c) \& \(\mathrm{MgCl}_{2}\) \& accept \(\mathrm{Mg}^{2+}\left(\mathrm{Cl}^{-}\right)_{2}\) \& 1 \\
\hline (d) \& \begin{tabular}{l}
because magnesium chloride is made of ions or is ionic \\
hydrogen chloride is made of molecules or is covalent
\end{tabular} \& \begin{tabular}{l}
accept there are strong forces of attraction between the ions / particles in \(\mathrm{MgCl}_{2}\) or strong electrostatic attractions accept more energy to separate particles in \(\mathrm{MgCl}_{2}\) \\
do not accept \(\mathrm{MgCl}_{2}\) molecules do not accept reference to breaking bonds \\
accept there are only weak forces of attraction (between the particles / molecules) in HCl \\
do not accept weak covalent bonds do not accept reference to breaking bonds do not accept \(\mathrm{MgCl}_{2}\) is a solid and HCl is a gas
\end{tabular} \& 1

1

\hline total \& \& \& 6

\hline
\end{tabular}

3421/H Q7

	answers	extra information	mark
(a)	water came into contact with rocks / ground / soil ions or compounds or chemicals or they dissolved / soluble / leached / reacts / forms a solution	ignore mountains erode gets first mark do not accept gets picked up accept water dissolves them from the rocks for $\mathbf{2}$ marks	1 1
(b)(i)	calcium or magnesium	accept Ca^{2+} or Mg^{2+} or Ca or Mg do not accept Ca^{+}alone	1
(ii)	answers must involve both calcium and magnesium Ridgway: $\mathrm{Ca}+\mathrm{Mg}=53$ Homeland: $\mathrm{Ca}+\mathrm{Mg}=27$	totals required for 2 marks accept there is (almost) twice as much Magnesium and Calcium in Ridgway water for $\mathbf{1}$ mark	1 1
(iii)	equal volumes / quantities / amounts of water add soap with shaking / mixing / agitation the harder sample (Ridgway) needs $2 \times$ more soap to give lather or the less hard sample (Homeland) needs half as much soap to give lather can get twice as much scum with harder (Ridgway) sample	same amounts of soap = max 2 do not accept just add do not accept solid soap	1 1
total			8

3421/H Q8

	answers	extra information	mark
(a)(i)	not fully ionised / dissociated or partially ionised	accept weak acids produce fewer H^{+} if equal concentration or equal amounts of acid specified do not accept just weakly ionised	1
(ii)	Test: Universal Indicator / pH indicator / full range indicator Result: e.g. stronger is a darker red or weaker is orange, yellow, paler red etc. or correct pH numbers <7 or pH meter correct pH values (1) or Test: $\mathrm{Mg} / \mathrm{Zn} / \mathrm{Fe} / \mathrm{Sn}$ or a carbonate / hydrogencarbonate Result: e.g. stronger is quicker / faster rate / more bubbles / more gas / more correctly named gas	do not accept other indicators accept redder accept pink for paler red do not accept green result linked Any suitable test but not titration	1 1
(b)	Quality of written communication The answer to this question requires ideas in good English in a sensible order with correct use of scientific terms. Quality of written communication should be considered in crediting points in the mark scheme. acids produce hydrogen ions acids are proton donors Link: hydrogen ions (Arrhenius) and protons (Bronsted-Lowry)	maximum 2 marks if ideas not well expressed	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
total			6

3421/H Q9

	answers	extra information	mark
(a)	aluminium is high in / near the top of the reactivity series / very reactive	more reactive than iron or copper or zinc do not accept just reactive	1
(b)	sodium hydroxide or potassium hydroxide	accept $\mathrm{NaOH} / \mathrm{KOH}$ (c)	accept $\mathrm{H}_{2} \mathrm{SO}_{4}$ (dilute) sulphuric acid acid
(d)	$4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$	accept multiples or fractions	1
total		1	

3421/H Q10

question	answers	extra information	mark
(a)	not broken down by microorganisms or not bio-degradable	accept alternative answers such as: do not rot / corrode / fade / react with atmosphere etc any answers which imply the inertness or non-biodegradability of this plastic accept they don't react, they are 'inert' ignore rusting do not accept weathering	1
(b)(i)	(have a) double bond or do not have maximum number of (hydrogen) atoms attached	accept can add / react with hydrogen accept can take part addition reactions do not accept it is a double bond do not accept additional reactions do not accept has 'spare' / 'free' bond do not accept alkene alone	1
(ii)	single bond between carbon atoms all atoms correct +2 'linking' bonds (linking bonds need not go through bracket) n moved to bottom right of bracket i.e. is below $\frac{1}{2}$ way on the right	 first 2 marks are possible for chain structures accept $\left[-\mathrm{CHCl}-\mathrm{CH}_{2}-\right]_{\mathrm{n}}$	1 1 1
(iii)	many molecules or many monomers joined / bonded / linked or form long chain molecules / large molecules or to form a long chain polymer	accept many alkenes or many (ethene) molecules do not accept many ethene alone etc. to form a long polymer is not enough for $2^{\text {nd }}$ mark	1 1
(iv)	no other substances formed $(\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C})$	allow because double bond breaks so other atoms can add allow one product only do not accept saturation occurs	1
total			8

3421/H Q11

question	answers	extra information	mark
(a)	use a fume cupboard or wear gas mask / breathing equipment because the gas is toxic / poisonous / lethal	do not accept well ventilated room ignore gloves etc.	1
(b)(i)	accept so it will kill you (owtte)	1	
electrons	are lost oxygen any mention of oxygen $=\mathbf{0}$ marks n.b. second mark must be linked to electrons i.e. protons are lost gets $\mathbf{0}$ marks	1	

3421/H Q12

question	answers	extra information	mark
(a)	$\begin{aligned} & \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \text { or } \\ & \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{aligned}$	mark for correct equation mark for state symbols any other symbols $=0$ marks accept correct spectator ions e.g. $\begin{aligned} & \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \\ & +\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\ & +\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(b)(i)	nitric acid and ammonia (solution) $\mathrm{HNO}_{3} \quad \mathrm{NH}_{3} / \mathrm{NH}_{4} \mathrm{OH}$	mark for both accept ammonium hydroxide / $\mathrm{NH}_{4} \mathrm{OH}$ instead of ammonia do not accept ammonia hydroxide do not accept hydrogen nitrate solution accept correct formulae	1
(ii)	provides oxygen or oxidising (agent) or oxidant	do not accept it contains oxygen alone or rich in oxygen	1
total			4

3421/H Q13

question	answers	extra information	mark
(a)	6 or 16	or transition metal or F block element or actinide	1
(b)	(elements in group 6 have) six (electrons) in the outer shell or needs 2 electrons to gain a full shell	1	
accept has 98 electrons	2		

3421/H Q14

question	answers	extra information	mark
(a)	comment + relevant example gets $\mathbf{1}+\mathbf{1}$ ma third marking point can be either a comme comment i.e. 3 comments would be max 2 (could be many answers) e.g. many elements in the groups have very dissimilar properties e.g. $\mathrm{Cu}+\mathrm{K}$ (= 2 marks) two elements in one place on the table e.g. Ce or La (= 2 marks) no clear division between metals and nonmetals or metals and non-metals jumbled / mixed up (could give example from table) Newlands didn't allow spaces for new elements	ks or an example unrelated to first arks ignore references to music	max 3
(b)	any two from: elements with dissimilar properties are separated or grouped elements with similar properties gaps left for elements to be added when discovered relative atomic mass order not followed in all cases (so that elements go in groups with other similar elements) or Mendeleev in proton number order groups related to electronic structure or group number equals number of outer electrons new groups created or iron, cobalt nickel in a group or eight groups instead of seven correct elements in periods 2 and 3 reactivity trends in groups or reactivity trends across periods separates metals and non-metals		2
total			5

3421/H Q15

question	answers	extra information	mark
(a)(i)	high temperature endothermic or reaction takes in energy or $\Delta \mathrm{H}$ is +ve	accept temperature given if $\geq 400^{\circ} \mathrm{C}$ ignore value if "high" stated, unless silly value independent marks	1
(ii)	low pressure (low pressure) favours a reaction in which more molecules are formed	or up to and including 10 atmospheres 2 moles $\rightarrow 4$ moles (2 molecules $\rightarrow 4$ molecules) independent marks	1 1
(iii)	nickel and it is a transition / transitional element / metal (owtte) or nickel and variable oxidation state / number or it is similar to other named transition elements e.g. iron		1
(b)(i)	$\begin{aligned} & (\text { bonds broken }=) 2005(\mathrm{~kJ}) \\ & (\text { bonds formed }=) 2046(\mathrm{~kJ}) \\ & \text { energy change }= \\ & 2005-2046=(-) 41 \end{aligned}$	for correct subtraction ignore sign	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(ii)	(exothermic) energy given out forming new bonds greater than energy put in to break old bonds	if in part (b)(i) answer is not 41 answer is consequential on endothermic or exothermic shown accept correct reasoning for incorrect answer from (b)(i) do not accept energy needed to form new bonds accept exothermic and more energy given out than taken in for 1 mark accept negative value for energy change or energy in products less than energy in reactants for $\mathbf{1}$ mark	1 1
total			10

3421/H Q16

question	answers	extra information	mark
(a)(i)	Quality of written communication The answer to this question requires ideas in good English in a sensible order with correct use of scientific terms. Quality of written communication should be considered in crediting points in the mark scheme. layers / lattice / giant structure / regular pattern of atoms (diagram) outer (shell) electrons (free to) move (through whole structure)	maximum 2 marks if ideas not expressed well allow layers / lattice / giant structure regular pattern of ions do not accept particles accept valence electrons accept delocalised / mobile / free	1 1 1
(ii)	the free electrons (allow the metal to conduct electricity)	accept electrons move / mobile / delocalised	1
(iii)	atoms / ions / layers can slide / slip / move over each other		1
(b)(i)	copper oxide formed or Cu reacts with oxygen or Cu is oxidised this is a poor conductor or gets in the way of free moving electrons or fewer mobile electrons or oxygen atoms / oxygen molecules / oxide ions in metal (1) prevents / disrupts flow of electrons / current or fewer mobile electrons (1)	do not accept electricity do not accept oxygen pockets / bubbles do not accept macro explanations do not accept electricity	1 1 (1) (1)
(ii)	hydrogen reacts with oxygen or water is formed or hydrogen reduces copper oxide etc.		1
total			8

3421/H Q17

question	answers	extra information	mark
(a)	$\begin{array}{ll} 168 \mathrm{~g} & \rightarrow 44 \mathrm{~g} \\ 1 \mathrm{~g} & \rightarrow \frac{44}{168} \\ 11 \mathrm{~g} & \rightarrow \underline{2.88 \mathrm{~g}(2.9 \mathrm{~g})} \end{array}$ or M_{r} values 84 and 44 moles hydrogen carb $=\frac{11}{84}=0.13$ mass of $\mathrm{CO}_{2}=\frac{0.13}{2} \times 44=\underline{2.9 \mathrm{~g}}$	care with rounding answer 2.88 to 2.9 gets $\mathbf{3}$ marks answer of 3 gets 2 marks	1 1 1 (1) (1) (1)
(b)	a number of answers are possible depending on the method used and rounding e.g. 1581.8 or 1582 from 2.9 1571 or 1570.9 from 2.88 or alternative method of calculation	$\begin{aligned} & \frac{\text { their }(\mathrm{a})}{44} \times 24000 \text { or } \\ & \frac{11}{168} \times 24000 \quad \text { for } 1 \text { mark } \\ & \text { (error carried forward from (a)) } \end{aligned}$	2
(c)	to make the cake rise (owtte)	ignore speed up	1
total			6

3421/H Q18

	answers	extra information	mark
	any series of chemical tests that work should be given credit Identifying all 4 substances unambiguousl e.g. - Flame test: yellow / orange $\Rightarrow \mathrm{Na}^{+} \Rightarrow \text { sodium sulphate }$ - \quad Add NaOH to remaining 3 samples: no (white) ppt / ammonia \Rightarrow $\mathrm{NH}_{4}{ }^{+} \Rightarrow$ ammonium sulphate (white) ppt \Rightarrow magnesium ions or aluminium ions - add excess NaOH to the 2 samples which gave a (white) ppt: ppt dissolves \Rightarrow aluminium sulphate ppt insoluble \Rightarrow magnesium sulphate or - Add NaOH : no ppt: ammonia $\Rightarrow \mathrm{NH}_{4}^{+} \Rightarrow$ ammonium sulphate the other one is sodium sulphate - Add excess NaOH to the 2 samples which gave the white ppt ppt dissolves \Rightarrow aluminium sulphate ppt insoluble \Rightarrow magnesium sulphate	each mark is for test + result + inference with no errors gains 5 marks ignore incorrect flame test colours for other compounds no need to test for ammonia (damp red) litmus* goes blue $\Rightarrow \mathrm{NH}_{3} \Rightarrow$ ammonium sulphate the other one is sodium sulphate *or UI/pH indicator goes blue/purple	1 1 1 1 1 (1) (1) (1) (1) (1)
total			5

3421/H Q19

	answers	extra information	mark
(a)(i)	e.g. moles $\mathrm{NaOH}=$ moles of acid $=0.2 \times \frac{45}{1000}=0.009$ rounding to 0.01 loses mark $=0.009 \times \frac{1000}{15}=0.6(\mathrm{M})$ ecf for arithmetical error	or formula: $15 \mathrm{M}_{1}=0.2 \times 45$ $\mathrm{M}_{1}=0.6(\mathrm{M})$ correct answer 2 marks	1 1
(ii)	36	$\text { ecf }-(\mathrm{a})(\mathrm{i}) \times 60$ correct answer $\mathbf{2}$ marks 0.6×60 gets 1 mark relative formula mass of ethanoic acid $=60$ for 1 mark $0.6 \times$ incorrect molar mass gains second mark only	2
(b)(i)	$\mathrm{A}=$ hydrogen $/ \mathrm{H}_{2}$		1
(ii)	$\mathrm{B}=$ sodium hydroxide $/ \mathrm{NaOH}$ or sodium oxide / $\mathrm{Na}_{2} \mathrm{O}$		1
(iii)	$\begin{aligned} \mathrm{C}= & \text { ethyl ethanoate (acetate) } / \\ & \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5} / \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \end{aligned}$		1
(iv)	$\mathrm{D}=($ concentrated) sulphuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$	do not accept dilute sulphuric acid	1
(v)	$\mathrm{E}=$ sodium ethanoate (acetate) $/$ $\mathrm{CH}_{3} \mathrm{COONa} / \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}$		1
total			9

3421/H Q20

	answers	extra information	mark
(a)	e.g. overall, oxygen is lost or titanium (in TiCl 4) gains electrons	accept titanium changes from Ti(IV) to Ti(0) or oxidation number of Ti is reduced	1
(b)	sodium or magnesium used	do not accept potassium noble gas as reducing agent loses first two marks	1

3421/H Q21

	answers				extra information	mark
(a)	answer wit \% $/ \mathrm{A}_{\mathrm{r}}$ mole ratio	o work C 60.00 $\frac{60}{12}$ $=5$	gains no H 4.48 $\begin{align*} & \frac{4.48}{1} \\ & =4.48 \tag{1} \end{align*}$ 8	$\begin{gather*} \text { marks } \\ \mathrm{O} \tag{1}\\ 35.52 \\ \frac{35.52}{16} \tag{1}\\ =2.22 \\ 4 \end{gather*}$	$\begin{aligned} & \text { reverse method } \\ & \frac{9 \times 12}{180} \times 100=60 \% \\ & \frac{8 \times 1}{180} \times 100=4.44 \% \\ & \frac{4 \times 16}{180} \times 100=35.55 \\ & 3^{\text {rd }} \text { mark can be gained by } \\ & \text { subtraction if other two \% are } \\ & \text { correct } \end{aligned} \text { depends on first two marks }$	1
(b)	0.00167 (m accept answ 0.00166 to	or 1.67 in range 0170 or	mmol .67 to 1.70		1.67 with no units gains $\mathbf{1}$ mark only $\frac{0.3}{180}$ or $\frac{300}{180}$ gets 1 mark	2
total						5

3421/H Q22

| | answers | extra information | mark |
| :---: | :---: | :---: | :---: | :---: |
| (a) | accept | | |

