

General Certificate of Secondary Education

Chemistry 4421

CHY3H Unit Chemistry 3

Mark Scheme

2012 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered schools / colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools / colleges to photocopy any material that is acknowledged to a third party even for internal use within the school / college.

Set and published by the Assessment and Qualifications Alliance.

MARK SCHEME

Information to Examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the Examiner make his or her judgement and help to delineate what is acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a mark or marks may be awarded.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.

2. Emboldening

- **2.1** In a list of acceptable answers where more than one mark is available 'any **two** from' is used, with the number of marks emboldened. Each of the following lines is a potential mark.
- **2.2** A bold **and** is used to indicate that both parts of the answer are required to award the mark.
- **2.3** Alternative answers acceptable for a mark are indicated by the use of **or**. (Different terms in the mark scheme are shown by a /; eg allow smooth / free movement.)

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.

Each error/contradiction negates each correct response. So, if the number of error/contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (indicated as * in example 1) are not penalised.

Example 1:	What is the pH of an acidic solution?	(1 mark)
------------	---------------------------------------	----------

Student	Response	Marks awarded
1	4,8	0
2	green, 5	0
3	red*, 5	1
4	red*, 8	0

Example 2: Name two planets in the solar system. (2 marks)

Student	Response	Marks awarded
1	Neptune, Mars, Moon	1
2	Neptune, Sun, Mars,	0
	Moon	

3.2 Use of chemical symbols / formulae

If a student writes a chemical symbol / formula instead of a required chemical name, full credit can be given if the symbol / formula is correct and if, in the context of the question, such action is appropriate.

3.3 Marking procedure for calculations

Full marks can be given for a correct numerical answer, as shown in the column 'answers', without any working shown.

However if the answer is incorrect, mark(s) can be gained by correct substitution / working and this is shown in the 'extra information' column;

3.4 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.5 Errors carried forward

Any error in the answers to a structured question should be penalised once only.

Papers should be constructed in such a way that the number of times errors can be carried forward are kept to a minimum. Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation e.c.f. in the marking scheme.

3.6 Phonetic spelling

The phonetic spelling of correct scientific terminology should be credited **unless** there is a possible confusion with another technical term.

3.7 Brackets

(....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

question	answers	extra information	mark
1(a)	because the water contains	allow magnesium or calcium throughout allow because the water contains	1
	magnesium ions or magnesium compounds / magnesium sulphate	magnesium / Mg ²⁺ / Mg / Mg⁺ / MgSO₄	
	sodium carbonate / carbonate <u>ions</u> reacts with the magnesium <u>ions</u> / magnesium sulfate	do not accept other ions allow sodium <u>ions</u> exchange / displace / magnesium <u>ions</u>	1
	to form solid / insoluble / precipitate of magnesium carbonate	allow solid contains magnesium (ions)	1
		ignore scale / scum	
1(b)(i)	any one from:		1
	anomalous	ignore error	
	 does not fit the pattern / straight line 		
1(b)(ii)	water boils (at 100 °C)	ignore evaporate	1
1(b)(iii)	68 (°C)		1
1(b)(iv)		'it' = solubility	
	solubility goes up then down (after 68°C or ecf from 1(b)(iii))	allow solubility changes direction allow solubility goes down / decreases after 68°C (or ecf from 1(b)(iii))	1
	solubility usually increases as the temperature increases		1
Total			8

Question 2

question	answers	extra information	mark
2(a)	any two from:		2
	 <u>react</u> with water or <u>very</u> reactive 		
	 (react with water) releasing gas / hydrogen / fizzing 		
	 (react with water) to form an alkaline / hydroxide solution 		
	 form ions with a <u>1+</u> charge 	allow lose one electron from the outer shell	
		ignore other references to electronic structure	
		ignore physical properties	
2(b)	any three from:		3
	 some boxes contain two 	allow specific examples:	
	elements	Co, Ni or Ce, La or Di, Mo or Ro, Ru or Ba, V or Pt, Ir	
	 groups / columns contain elements with different properties 	allow groups / columns contain both metals and non-metals ignore examples	
	 Newlands not a well-known / respected scientist 	ignore references to sugar factory	
	 new idea (not readily accepted by other scientists) 	allow musical scales thought to be silly by some scientists	

Question 2 continues on the next page . . .

Question 2 cont'd...

question	answers	extra information	mark
2(c)	one for improvement and one for explanation from:		2
	 left gaps (for undiscovered elements) (1) 		
	 so that elements were in their correct group (1) 	allow so the elements fitted the pattern of properties	
	or		
	 did not always follow order of relative atomic weights / masses (1) 	ignore references to atomic number / electronic structure	
	 so that elements were in their correct group (1) 	allow so the elements fitted the pattern of properties	
Total			7

question	answers	extra information	mark
3(a)	any two from:		2
	 do not react with water do not react with air	allow unreactive or <u>stay</u> shiny or do not tarnish or do not corrode for either of first two points for 1 mark	
		ignore rusts	
		ignore durable	
	malleable	ignore hard / strong	
	 high melting point 	ignore boiling point	
		ignore other correct properties	
3(b)	(transition elements have) same number / two electrons in outer shell / energy level / fourth shell	ignore references to (metallic) structure / bonding	1
	any one from:		1
	 because lower energy level / inner shell being filled 		
	 because third energy level can hold up to eighteen electrons 		
Total			4

Question 4

question	answers	extra information	mark
4(a)	Hydrogen / H⁺	ignore state symbols	1
		ignore proton / H	
4(b)		it = weak acid	
	pH of weak acid is higher than the pH of a strong acid	allow converse for strong acids allow correct numerical comparison	1
	any one from:	allow converse for strong acids	1
	 only partially dissociated (to form ions) 	allow ionises less	
	 not as many hydrogen ions (in the solution) 	allow fewer H⁺ released	
4(c)(i)	(titration of) weak acid <u>and</u> strong base		1
4(c)(ii)	0.61	correct answer with or without working gains 2 marks	2
		if the answer is incorrect:	
		moles of sodium hydroxide = (30.5 x 0.5)/1000 = 0.01525 moles	
		or	
		(0.5 x 30.5/25) gains 1 mark	

Question 4 continues on the next page ...

Question 4 cont'd..

question	answers	extra information	mark
4(d)	12	correct answer with or without working gains 2 marks or even with incorrect working.	2
		if the answer is incorrect: $0.8 \times 60 = 48g$ or evidence of dividing 48g (or ecf) by 4 or $0.8 \times 250 = 0.8 = 0.8 \times 0.25 = 0.2 \text{ mol}$ $1000 4$ or evidence of multiplying 0.2mol (or ecf) by 60 would gain 1 mark	
Total			8

question	answers	extra information	mark
5(a)(i)	(bubble gas produced through) limewater	incorrect tests = zero	1
	(limewater) goes cloudy / milky		1
5(a)(ii)		ignore yes or no	
	red flame indicates that calcium / lithium ions present	allow aluminium has no flame colour	1
	or		
	Ca/Mg also produce a (white) precipitate with NaOH		
	the (white) precipitate formed in test 3 or by adding sodium hydroxide solution would dissolve (in excess) if aluminium ions were present		1
5(a)(iii)		ignore yes or no	
	because a white precipitate is formed in test 4 or by adding silver nitrate		1
	but chloride ions are in hydrochloric acid		1
5(b)(i)	mass spectrometry	allow MS	1
	or		
	atomic absorption spectroscopy	allow AAS	
		spectrometry / spectroscopy alone is insufficient	
5(b)(ii)	can detect a small(er) amount	allow can detect small(er) changes	1
	of the substance	allow small(er) sample sizes	
		ignore references to precision / accuracy	
Total			8

question	answers	extra information	mark
6(a)	all have seven electrons in their outer shell / energy level		1
6(b)	chlorine atom is smaller than bromine atom or chlorine atom has fewer shells than bromine atom	must be comparative in all points or converse	1
	outer shell / energy level of chlorine has stronger (electrostatic) attraction to the nucleus than bromine or outer shell of chlorine is less shielded from the nucleus than bromine		1
	so chlorine more readily <u>gains</u> an extra electron		1
Total			4

Question 7

question	answers	extra information	mark
7(a)(i)	(-)810	ignore sign	3
		correct answer gains 3 marks with or without working	
		if the answer is incorrect look at the working up to a maximum of two	
		 bonds broken = (4 x 414) + (2x498) = 2652 kJ bonds formed = (2x803) + (4x464) = 3462 kJ correct subtraction of their bonds formed from their bonds broken 	
7(a)(ii)	because energy needed to break the bonds		1
	is less than the energy released when bonds are formed		1
7(b)	to provide activation energy		1
	or		
	to break bonds		
Total			6

UMS Conversion Calculator <u>www.aqa.org.uk/umsconversion</u>