Surname				Other	Names			
Centre Number					Cand	lidate Number		
Candidate Signat	ure							

For Examiner's Use

AQA

General Certificate of Secondary Education June 2009

SCIENCE B Unit Chemistry C1

CHEMISTRY Unit Chemistry C1

Foundation Tier

Wednesday 17 June 2009 9.00 am to 9.45 am

For this paper you must have: • a ruler.

You may use a calculator.

Time allowed: 45 minutes

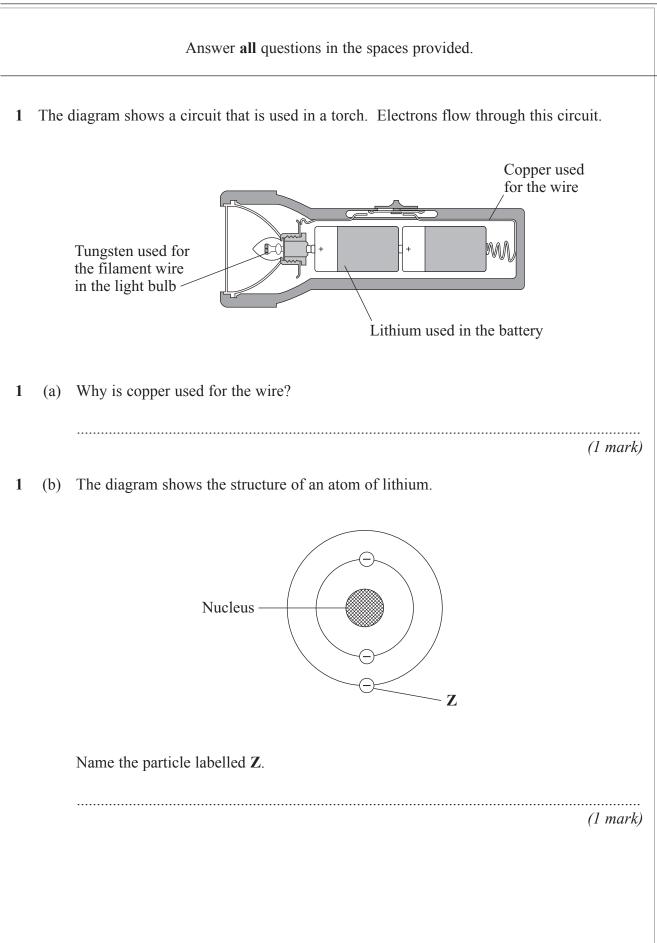
Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

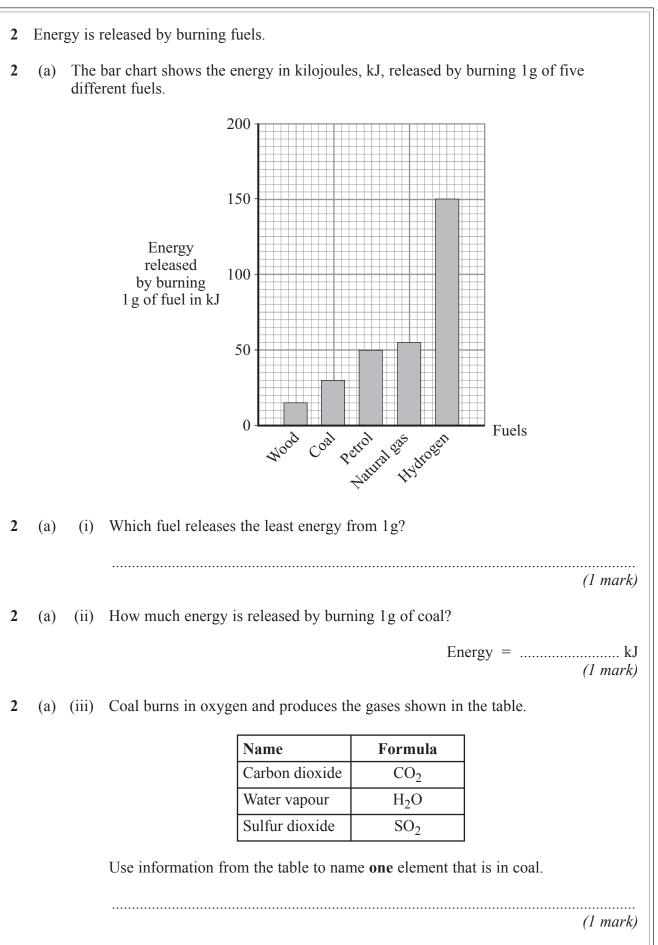
- The maximum mark for this paper is 45.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

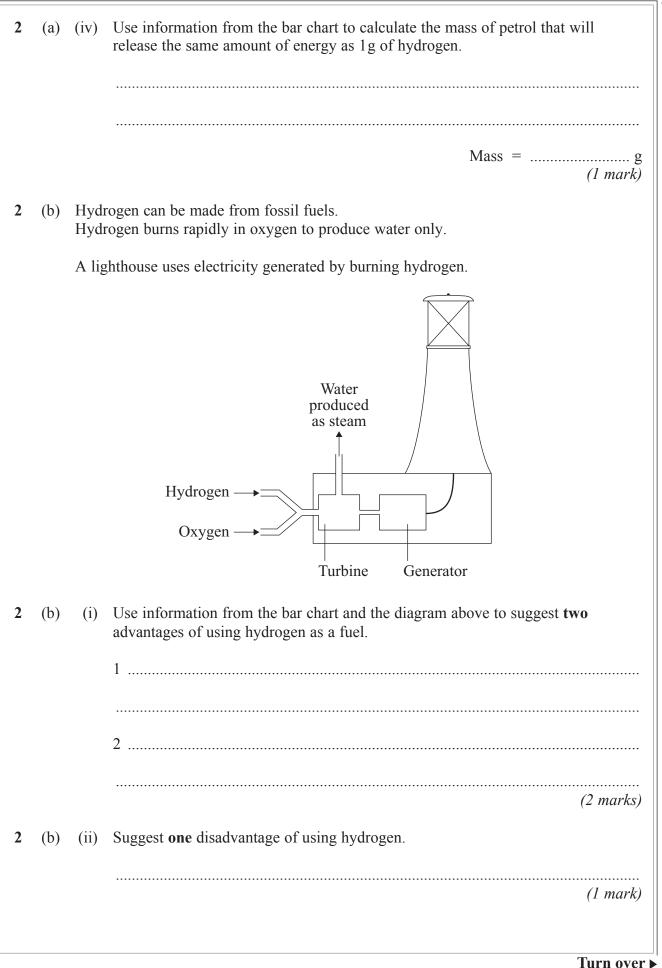
Advice


• In all calculations, show clearly how you work out your answer.

For Examiner's Use						
Question	Mark	Question	Mark			
1		6				
2		7				
3						
4						
5						
Total (Co	Total (Column 1)					
Total (Column 2)>						
TOTAL						
Examine	r's Initials					

CHY1F





1	(c)	The table shows some properties of the metals used in the electrical circuit.						
		Metal	Melting point in °C	Boiling point in °C	Reaction with oxygen			
		Copper	1083	2582	Reacts slowly to form a thin oxide layer on surface			
		Lithium	179	1317	Reacts rapidly to form oxide			
		Tungsten	3370	5930	Reacts only when very hot to form oxide			
1	(c)	 (i) Use information from the table to suggest the order of reactivity for copper, lithium and tungsten. most reactive 						
1	(c)	 least reactive						
1	(d)	Draw a ring ar	n the light bulb is argon. ound the correct word in in the light bulb because	the box to comple dense.	(1 mark) te the sentence. (1 mark)			

G/J43780/Jun09/CHY1F

3	This	is par	t of a food label.				
				at, particularly saturated aintain a healthy heart.'	fat,		
			Nutritional info	rmation table:			
				Per 100 g			
			Total fat	77.6 g			
			of which: satur	rated 11.2 g			
			unsa	turated 66.4 g			
			Also contains co	olourings			
3	(a)	(i)	Why is this food described	as 'healthy'?			
3	(a)	(ii)	Draw a ring around the cor	rect word in the box to	complete	the sentence	<i>(1 mark)</i> ee.
-	()	()	Unsaturated fat can be dete		bromin hydrog sulfur.	ne.	
							(1 mark)
3	(b)	Liqu	id fats are called oils. Oil ar	nd water can be shaken	together	to make a m	nixture.
		Drav	v a ring around the correct a	nswer in the box to com	plete eac	ch sentence.	
3	(b)	(i)	The mixture of oil and wate	er can be prevented			
	(-)	()	from separating by adding	a colouring. an emulsifier. a preservative.			
							(1 mark)
						1 101:0	
2	(b)	(;;)	Compared with either eil e	r water the ministers has	a hattar	shelf life.	
3	(b)	(ii)	Compared with either oil of	i water the mixture has	a vener	smell. texture.	

(1 mark)

The result of a process used to detect and identify the colours in two foods, A and B, 3 (c) is shown. 0 \bigcirc Food A Food **B** (c) (i) Describe the differences between the colours used in food A and food B. 3 (2 marks) (ii) Tick (\checkmark) the name of the process used to detect and identify colours in food. 3 (c) **Process (**√) chromatography extraction hardening (1 mark)

Turn over ►

4 Billions of years ago, the Earth's early atmosphere was probably like the atmosphere of Venus today.

The table shows a comparison of the atmospheres of the Earth and Venus today.

				Percentage composition of atmosphere				
	Na	me of	gas	Earth today	Venus today			
	Nit	rogen		78	3.5			
	Ox	ygen		21	a trace			
	Arg	gon		0.97	a trace			
-	Car	bon d	lioxide	0.03	96.5			
-	Ave	erage	surface temperature	20°C	460 °C			
	(a)	Use	the names of gases from	the table to complete the	sentences.			
	(a)	(i)	In the Earth's atmosphe	re today, the main gas is	(1 ma			
	(a)	(ii)	In the Earth's atmosphe	re billions of years ago, th	e main gas was			
					(1 ma			
	(b)	(i)	Scientists do not know t Suggest why.	he accurate composition o	f the Earth's early atmosphere.			
					(1 ma			
	(b)	(ii)	Use information from th	ne table to answer this que	estion.			
				in the atmospheres of the nainly covered by water.	Earth and Venus today.			
			Suggest why there is no	water on the surface of V	⁷ enus.			

The diagram shows how carbon dioxide is removed from the Earth's atmosphere. 4 (c) Carbon dioxide Oxygen Carbon dioxide 9999 Coal Ocean Limestone \cap Ói Describe what happened to the carbon dioxide in the Earth's early atmosphere. Use the diagram to help you. (3 marks) Turn over for the next question

Turn over ►

- **5** Crude oil is used to make useful substances such as alkenes and plastics.
- 5 (a) The alkene shown is ethene.

5 (a) (i) Tick (\checkmark) the correct formula for ethene.

Formula	(√)
CH ₄	
C_2H_4	
C_2H_6	

(1 mark)

5 (a) (ii) Tick (✓) the name of the plastic formed when many ethene molecules join together.

Name of plastic	(√)
Poly(ethene)	
Poly(ethanol)	
Poly(propene)	

(1 mark)

5	(b)	Read the article about plastics and then answer the questions.
0	(0)	Redu the article about plastics and then answer the questions.

THE PROBLEM WITH PLASTIC WASTE

The UK produces about 3 million tonnes of plastics from crude oil every year. Most of the litter found on UK beaches is plastic waste. 80% of the plastics produced end up in landfill sites. The UK recycles only 7% of plastic waste.

5 (b) (i) Draw a ring around the correct answer in the box to complete the sentence.

Litter that is plastic waste needs to be removed from beaches

because it is flammable. is not biodegradable.

(1 mark)

5 (b) (ii) Suggest a problem caused by 80% of the plastics going to landfill sites.

(1 mark)

5 (b) (iii) The UK government has set a target to recycle 30% of plastic waste.

How are resources saved by recycling more plastics?

Turn over for the next question

6 A limestone quarry is in an area of natural beauty and near several villages. The company operating the quarry wants planning permission to build a new cement works in the quarry.

The diagram shows some of the substances used and produced at a cement works.

		Crushed limestone Crushed Limestone Crushed Cr
6	(a)	Limestone is mainly calcium carbonate, $CaCO_3$. Write the correct number in the box to complete each sentence.
6	(a)	(i) The formula shows that calcium carbonate, $CaCO_3$,
		contains different elements.
		(1 mark)
6	(a)	(ii) Calcium carbonate, CaCO ₃ , contains a total number of atoms. (1 mark)
6	(b)	The company wants the new cement works because the nearest cement works is 100 km from the quarry. The company argues that a new cement works sited inside the quarry would reduce carbon dioxide emissions.
		Suggest why the new cement works might reduce carbon dioxide emissions.
		(1 mark)

			13	Areas outside the box will not be scanned for marking
6	(c)		dents from the villages near the quarry are concerned that there will be ospheric pollution from the new cement works.	
6	(c)	(i)	Name and explain how one of the emissions from the chimney causes atmospheric pollution.	
			Name of emission:	
			Explanation:	
			(2 marks)	
6	(c)	(ii)	Suggest what the company could do to reduce this atmospheric pollution.	
			(1 mark)	
				6
			Turn over for the next question	

Turn over ►

(a)	Limestone is a hard rock that is used as a building material. Limestone was used by the Egyptians to make plaster.	
	Reaction 1 – calcium carbonate, CaCO ₃ , was decomposed by heating limestone	
	$CaCO_3 \rightarrow CaO + CO_2$	
	Reaction 2 – water was added to the solid produced to make slaked lime	
	$CaO + H_2O \rightarrow Ca(OH)_2$	
	Reaction 3 – a mixture of slaked lime and water was used as plaster. After the plaster had set it became even harder with age	
	$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$	
(a)	(i) Name the solid formed when calcium carbonate decomposed.	
	(1 mark	5)
(a)	(ii) Use the reactions to explain how the plaster became even harder with age.	
		•
		-
		•
		•
		•
		-
	(3 marks)
	(a)	Limestone was used by the Egyptians to make plaster. Reaction 1 – calcium carbonate, $CaCO_3$, was decomposed by heating limestone $CaCO_3 \rightarrow CaO + CO_2$ Reaction 2 – water was added to the solid produced to make slaked lime $CaO + H_2O \rightarrow Ca(OH)_2$ Reaction 3 – a mixture of slaked lime and water was used as plaster. After the plaster had set it became even harder with age $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$ (a) (i) Name the solid formed when calcium carbonate decomposed. (1 mark (a) (ii) Use the reactions to explain how the plaster became even harder with age.

7 (b) A gardener wanted to make a step up to his greenhouse door. He decided to use a mixture of cement and sand to make mortar.

He experimented using mixtures with different cement to sand ratios.

- The mortar mixtures were put in the same sized mould.
- Each mortar mixture was allowed to set hard.
- He then dropped a metal ball from increasing heights until the set mortar cracked.
- He recorded his results in a table.

Volume of sand in cm ³	Volume of cement in cm ³	Height the metal ball dropped to crack the set mortar in cm
800	100	17
700	100	24
600	100	30
500	100	36
400	100	37
300	100	48
200	100	54

7 (b) (i) What is the relationship between the volume of sand and the strength of the mortar?

(1 mark)


7 (b) (ii) The gardener was not sure about some of his results.

Use the results to explain why.

(2 marks)

END OF QUESTIONS

