Mark Scheme (Results)
June 2011

GCSE Astronomy (5AS01) Paper 01

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can contact our Subject Advisor for Astronomy, directly by sending an email to a Science Specialist on ScienceSubjectAdvisor@EdexcelExperts.co.uk You can also telephone 08445760037 to speak to a member of our subject advisor team.

June 2011
Publications Code UG027452
All the material in this publication is copyright
© Edexcel Ltd 2011

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

Question Number	Answer	Mark
$\mathbf{1 (a)}$	C (The Moon)	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 (b)}$	C (Mercury)	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 (c)}$	C (Pluto)	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 (d)}$	Ceres	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{2 (a)}$	B (150 million km$)$	$\mathbf{1}$

Question Number	Answer	Mark
2(b)	D (ellipse)	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{2 (c)}$	A (ecliptic)	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{2 (d)}$	$\underline{23}$ (hours) $\underline{56}(\mathrm{~min})$	$\mathbf{1}$
	Both correct	

Question Number	Answer	Mark
$\mathbf{2 (e)}$	A (27.3 days)	$\mathbf{1}$

Question Number	Answer	Reject	Mark
$\mathbf{3 (a)}$	Gibbous	(accept waxing gibbous, waning gibbous)	Waning Waxing Half-full

Question Number	Answer	Mark
$\mathbf{3 (b)}$	B (10 days)	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{3 (c)}$	Full	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{3 (d)}$	$\bullet \quad$Sun Earth and Moon in alignment (ignore sizes) Earth in middle	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{4 (a)}$	C (Sea of Crises)	$\mathbf{1}$

Question Number	Answer	Mark
4(b)	D (Tycho)	$\mathbf{1}$

Question Number	Answer	Mark
4(c)	A (any label) correctly labelled to left of Sea of Serenity (in between two large dark areas at top)	$\mathbf{1}$
Question Number	Answer	Reject
4(d)	- Space probes/astronauts/lunar satellites (have orbited the Moon and photographed the far side)	Rockets...

Question Number	Answer	Reject	Mark		
4(e)	Any two of the following examples (or other sensible piece of information): \bullet more craters • more highlands / mountains \bullet lighter in appearance no/fewer (major) maria/rilles (2)	Darker			
QwC - Cap. letters, spelling and					
punctuation					
(1)				\quad Invisible from Earth	
:---					

Question Number	Answer	Mark
$\mathbf{5 (a)}$	Any two of the following examples up to a maximum of two marks: \bullet Jupiter	
	• Uranus Neptune	

Question Number	Answer	Mark
$\mathbf{5 (b)}$	Mars	$\mathbf{1}$

Question Number	Answer	Reject	Mark
5(c)	Any two of the following examples up to a maximum of two marks: - large quantity of carbon dioxide CO_{2} extremely high temperature on surface prevention of IR radiation from 'escaping' into space/'traps heat' dense atmosphere / clouds (2×1)	Temperature (by itself)	Greenhouse effect

Question Number	Answer		Mark
$\begin{aligned} & 6(a)(i) \\ & 6(a)(i i) \\ & 6(a)(i i i) \end{aligned}$	A (North) $(+) \underline{90^{\circ}}\left(\right.$ accept $\left.90^{\circ} \mathrm{N}\right)$ 55°	1 1 1 (3)	
Question Number	Answer	Reject	Mark
6(b) (i)	5 stars in 'W' or 'M' shape (any orientation)	Just lines without 'stars’	1
6(b) (ii)	Stars that do not set/rise/go (below the horizon)	Orbit Polaris Visible all day/night/for 24h Always visible Visible all year	1
6(b) (iii)	Yes (1) Reason given in terms of formula or by explanation (1) IF RESPONSE IS Yes		2
	i.e. if No, score 0 for 6 (b) (iii)		(4)

Question Number	Answer	Mark
$\mathbf{7 (a) (i)}$	Dark(er) patches (on surface of Sun)	$\mathbf{1}$

Question Number	Answer	Reject	Mark
$\mathbf{7 (a)}$ (ii)	Any one of: • solar flare Q prominence Q filament • plage • active region	Corona Photosphere	$\mathbf{1}$

Question Number	Answer	Reject	Mark
$\mathbf{7 (a)}$ (iii)	Better contrast / ideal narrow-band filter	Less bright	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{7 (b)}$	Sensible diagram showing sunspots Correct description of method related to observing movement of sunspots across the solar disc	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{7 (c) (i)}$	Glowing coloured (curtains/streamers) lights in the sky	$\mathbf{1}$

| Question
 Number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| 7(c) (ii) | Charged particles in solar wind ...
 ..excite/interact with (gas) molecules in
 atmosphere | $\mathbf{1}$ |

Question Number	Answer	Mark
$\mathbf{8 (a)}$	B (Kuiper Belt)	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{8 (b)}$ (i)	Whole (complete) ellipse drawn (fairly eccentric)	$\mathbf{1}$
8 (b) (ii)	Sun at focus of ellipse i.e. NOT symmetrical Pindicated at any ONE point of intersection (ignore >1 intersection)	$\mathbf{1}$

Question Number	Answer	Reject	Mark
$\mathbf{8 (c) (i)}$	radiant		$\mathbf{1}$
$\mathbf{8 (c) (i i)}$	Perseus	Perseid	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{8 (d)}$	Fireball is a $\underline{\text { bright// magnitude }<-3 \text { meteor }}$	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{9 (a)}$	C (30 kpc)	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{9 (b)}$ (i)	S labelled approx 2/3 of way out from centre within spiral arm	$\mathbf{1}$
9(b) (ii)	F labelled in spiral arm (any position but not in bulge) 9(b) (iii)	$\mathbf{1}$

Question Number	Answer	Mark
10(a)	Any two of the following examples (or other sensible piece of information) up to a maximum of two marks: - weather forecast - magazine/newspaper - internet - astronomical software - planisphere (2×1) MUST BE SOURCES OF INFORMATION	(2)

Question Number	Answer	Mark
$\mathbf{1 0 (b)}$	Arrow drawn downwards from two right-hand stars in the square	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 0 (c)}$	A (Andromeda galaxy)	$\mathbf{1}$

Question Number	Answer	Reject	Mark
$\mathbf{1 0 (d)}$	Observing slightly to the side of the object / don't look directly at the object	'corner of the eye'	$\mathbf{1}$

Question Number	Answer	Reject	Mark
$\mathbf{1 0 (e)}$	Any one of: \bullet \bullet \bullet \bullet relaxed eye use of a red torch/filter	Any optical aid	$\mathbf{1}$

Question Number	Answer	Reject	Mark
10(f)	Any two of the following examples (or other sensible piece of information): - clear images / 'better pictures' / higher resolution - data in computer file format / able to store - images in colour - spectroscopy (or other analysis) possible 1)	Higher magnification (without justification(More accurate Similar vague statements	(2)

Question Number	Answer	Mark
$\mathbf{1 1 (a)}$	B A D C (correct sequence - mark as	
below)		
	B first	$\mathbf{1}$
	C last	$\mathbf{1}$
	A followed by D	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 1 (b)}$	White Dwarf	$\mathbf{1}$

Question Number	Answer	Reject	Mark
$\mathbf{1 1 (c) (i)}$	Supernova / SNR / supernova remnant	Explosion	$\mathbf{1}$
$\mathbf{1 1 (c) (i i)}$	Neutron star / black hole / pulsar	White/red dwarf	$\mathbf{1}$

Question Number	Answer	Mark
12 (a) (i)	Any two of the following points, up to a maximum of two marks: - astrometry - look for small 'wobbles' in position of a star - radial velocity method - look for Dopplershifts in star - transit dimming of star - gravitational microlensing	2
	Any two of the following points, up to a maximum of two marks: - small masses of planets do not affect parent star's position - atmospheric turbulence prevents precise measurements of star's position - star much brighter than planet(s) - dist/gas around star - exoplanets not shining by their own light (only reflected light)	2 (4)

Question Number	Answer	Mark
12(b)	Any two of the following examples up to a maximum of two marks: - number of stars in the galaxy - fraction of stars with planetary systems - number of planets capable of sustaining life - fraction of life forms that are intelligent - fraction of intelligent life-forms that wish to communicate - fraction of a planet's lifetime during which civilisations can live	(2)

Question Number	Answer	Mark
$\mathbf{1 3 (a) (i)}$	(Ori)	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 3 (a) (i i)}$	(Ori)	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 3 (b)}$	Due to Earth's orbit around the Sun ('seasonal' reference) Orion would be in line with Sun and so not visible / be visible in 'daylight' OR sensible answer mentioning RA and dec of Sun during June	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 3 (c) (i)}$	(Imaginary) line due south running overhead Accept more formal Great Circle N, zenith, S. Must imply observer i.e. no ref. to longitude	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 3 (c) (i i)}$	40 min time difference...(stated or implied by correct answer) so time $=17: 20$ (allow 1 mark for 16:00)	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 4 (a)}$	Name of probe (e.g. Giotto, Deep Impact, Apollo, Cassini) Correct 'target' (e.g. Halley's Comet, Moon.) Statement of one finding/result of mission (e.g. structure/composition)	$\mathbf{1}$

Question Number	Answer	Reject	Mark
14(b)	Any two of the following examples up to a maximum of two marks: - brittle bones - muscle fatigue - psychological problems associated with other crew members - nausea - communication (time delay) problems - exposure to radiation from Sun - impact - (health problems due to) low gravity	Food running out Not enough fuel Lack of oxygen Hostile atmosphere Long journey	(2)

Question Number	Answer	Mark
$\mathbf{1 5 (a)}$	$12: 10$	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 5 (b)}$	$12: 04$ Allow ECF here i.e. response to (a) minus 6 min or $12: 16$ Allow ECF here i.e. response to (a) plus 6 min	$\mathbf{2}$
Question Number	Answer	$\mathbf{1}$
$\mathbf{1 5 (c)}$	1° W Must have some indication of direction	Mark
Question Number	Answer	$\mathbf{1}$
$\mathbf{1 5 (d)}$	8 min later so 12:18 GMT No ECF from (a) (i)	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 6 (a)}$	Binary star involves common centre of mass / gravitationally associated / physically close Optical double is a 'line of sight' / co-incidental effect / 'they only appear close together' If candidate mixes up names, 1 max.	$\mathbf{1}$
Question Number	Answer	(2)
$\mathbf{1 6 (b) (i)}$		$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 6 (b) ~ (i i) ~}$	6.25 (allow 6.2-6.3) $/ 2.5^{2}$	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 6 (b) ~ (i i i) ~}$	-0.6	$\mathbf{2}$
	or	
	some sensible attempt at working (log $\mathrm{d}=2)$	$\mathbf{1}$

Question Number	Answer	Mark
17(a) (i)	any one of: - street/motorway lights - the Moon - sports stadiums - supermarket lights - security lights - etc.	1

Question Number	Answer	Mark
$\mathbf{1 7 (a)}$ (ii)	any one of: • reduces contrast • makes fainter stars invisible • prevents obscound sky orange/yellow - affects night vision • etc.	$\mathbf{1}$

Question Number	Answer	Mark
17 (b)	Any two of the following points, up to a maximum of two marks: - use angles of shadows... - at two different latitudes (may be implied on diagram) - at Alexandria and Syene - no shadow at one latitude but shadow at the other (2×1) Any two of the following points, up to a maximum of two marks: - find difference in 'angle' - use known distance between two cities (2×1) QWC (logical explanation)	2 2 1 (5)

Question Number	Answer	Mark
18(a)	Radio waves will penetrate dust in spiral arms / visible light unable to penetrate dust	1
Question Number	Answer	Mark
18(b)	Any three of the following points, up to a maximum of three marks: - discovered in 1965 by Penzias and Wilson (one of these) - detection of uniform noise from all areas of sky using radio waves / horn antenna - confirmed presence of CMB suggested by other team (Dicke at Princeton University) - irregularities / ripples in CMB - 'echo' of Big Bang - corresponds to 3 K temperature 1)	3
Question Number	Answer	Mark
18(c)	- Convert value of H into inverse of time units - Invert to give the age of the Universe	$\begin{array}{\|l\|} \hline \mathbf{1} \\ \mathbf{1} \end{array}$ (2)

Question Number	Answer	Reject	Mark
$\mathbf{1 9 (a) (i)}$	Spiral / S / Sa / Sb / Sc	Barred spiral SB	$\mathbf{1}$
19(a) (ii)	Irregular / Irr		$\mathbf{1}$

Question Number	Answer	Reject	Mark
19(b)	Any two of the following examples up to a maximum of two marks: - Milky Way - SMC / Small Magellanic Cloud - Triangulum galaxy / M33 - Pisces Dwarf - Aquarius Dwarf - etc	LMC / Large Magellanic Cloud Andromeda galaxy	(2)

Question Number	Answer	Mark
19(c)	Any two of the following examples up to a maximum of two marks: - lots of non-thermal emission - strong X-ray emitters - strong radio emitters - (active) massive black hole at centre (AGN) - jets / lobes - etc	(2)

| Question
 Number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 0 (a)}$ | Strong radio sources... | |
| matched to faint star-like objects by optical
 astronomers | $\mathbf{1}$ | |

Question Number	Answer	Mark
20(b)	0.33 or 33% or $1 / 3$ or $15 / 46$ or 150/460 (decimal or fraction allowed) or 0.25 or 25% or some attempt to use formula correctly / correct substitution -1 if unit is given or final answer gives actual velocity of quasar	
Question Number	Answer	Mark
20(c)	B (the galaxy is moving towards us)	1

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG027452 June 2011

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

