| Write your name here        |               |                  |
|-----------------------------|---------------|------------------|
| Surname                     | Ot            | ther names       |
| Edexcel GCSE                | Centre Number | Candidate Number |
| Astronom Unit 1: Understand |               | erse             |
| Thursday 9 June 2011 – M    | orning        | Paper Reference  |
| Time: 2 hours               |               | 5AS01/01         |

## **Instructions**

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
  - there may be more space than you need.

## Information

- The total mark for this paper is 120.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (\*) are ones where the quality of your written communication will be assessed
  - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.

## **Advice**

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.





## **Answer ALL questions.**

Some questions must be answered with a cross in the box ( $\boxtimes$ ). If you change your mind about an answer, put a line through the box ( $\boxtimes$ ) and then mark your new answer with a cross ( $\boxtimes$ ).

| (a) W      | nich of these objects in the Solar System has the smallest diameter?              | /41                                    |
|------------|-----------------------------------------------------------------------------------|----------------------------------------|
| ⊠ A        | Earth                                                                             | (1)                                    |
| ⊠ B        | Jupiter                                                                           |                                        |
| <b>⋈</b> C | The Moon                                                                          |                                        |
| <b>⋈</b> D | The Sun                                                                           |                                        |
| (b) W      | nich of these objects in the Solar System is closest to the Sun?                  | (-1)                                   |
| ⊠ A        | Earth                                                                             | (1)                                    |
| ⊠ B        | Mars                                                                              |                                        |
| <b>⋈</b> C | Mercury                                                                           |                                        |
| ■ D        | The Moon                                                                          |                                        |
| (c) W      | nich of these objects in the Solar System takes the longest time to orbit the Sun | ?                                      |
| ⊠ A        | Earth                                                                             | (1)                                    |
| ⊠ B        | Neptune                                                                           |                                        |
| <b>⊠</b> C | Pluto                                                                             |                                        |
| ■ D        | Venus                                                                             |                                        |
| (d) W      | nat is the name of the dwarf planet that orbits <b>closest</b> to the Sun?        | (1)                                    |
|            | (Total for Question 1 = 4 ma                                                      | ······································ |

| 2 | (a) Wh        | at is the value of 1 astronomical unit?                                     |       |
|---|---------------|-----------------------------------------------------------------------------|-------|
|   | ⊠ A           | 15 million km                                                               | (1)   |
|   | ⊠ B           | 150 million km                                                              |       |
|   | ⊠ C           | 15 million miles                                                            |       |
|   | ⊠ D           | 150 million miles                                                           |       |
|   | (b) Wh        | at is the name of the shape of the Earth's orbit around the Sun?            | (1)   |
|   | ⊠ A           | eccentric                                                                   |       |
|   | $\boxtimes$ B | eclipse                                                                     |       |
|   |               | ecliptic                                                                    |       |
|   | ■ D           | ellipse                                                                     |       |
|   |               | at is the name of the plane of the Earth's orbit around the Sun?            | (1)   |
|   | _             | ecliptic                                                                    |       |
|   | ⊠ B           | eclipse                                                                     |       |
|   |               | zenith                                                                      |       |
|   | ⊠ D           | zodiac                                                                      |       |
|   | (d) Hov       | w many hours and minutes does it take the Earth to rotate on its axis once? | (1)   |
|   |               | hours, minutes.                                                             |       |
|   | (e) Hov       | w long does it take the Moon to spin on its axis once?                      | (1)   |
|   | ⊠ A           | 27.3 days                                                                   |       |
|   | ⊠ B           | 28.0 days                                                                   |       |
|   | ⊠ C           | 29.5 days                                                                   |       |
|   | ⊠ D           | 31.0 days                                                                   |       |
|   |               | (Total for Question 2 = 5 ma                                                | arks) |

**3** Figure 1 shows a rough sketch of the Moon.



Figure 1

(a) What is the phase of the Moon in the sketch?

(1)

(b) How many days into the lunar cycle is this?

(1)

- A 6 days
- B 10 days

(c) What is the phase of the Moon during a **lunar** eclipse?

(1)

(d) In the space below, sketch and label the relative positions of the Sun, Earth and Moon during a **lunar** eclipse.

(2)

(Total for Question 3 = 5 marks)





**4** Figure 2 shows the near side of the Moon.



Figure 2

- (a) What is the name of feature X?
- A Bay of Rainbows
- B Ocean of Storms
- ☑ D Sea of Tranquility
- (b) What is the name of crater **Y**?
- A Copernicus
- B Galileo
- ☑ D Tycho

(1)

(1)

| (c) On Figure 2, indicate the location of the Apennine mountain range.                                |       |
|-------------------------------------------------------------------------------------------------------|-------|
| Use the letter <b>A</b> .                                                                             | (1)   |
| (d) The Moon's far side is not visible from the Earth.                                                |       |
| How do astronomers know what the far side looks like?                                                 | (1)   |
| *(e) State <b>two</b> ways in which the appearance of the Moon's far side differs from the near side. | (3)   |
|                                                                                                       |       |
| (Total for Question 4 = 7 m                                                                           | arks) |

| 5   | (a) The planet Saturn is well-known for its prominent ring system.                                    |       |
|-----|-------------------------------------------------------------------------------------------------------|-------|
|     | Name <b>two</b> other planets that have ring systems.                                                 | (2)   |
| 1.  |                                                                                                       |       |
| 2 . |                                                                                                       |       |
|     | (b) Which planet has two small satellites that astronomers believe are captured asteroids?            |       |
|     |                                                                                                       | (1)   |
|     | (c) The atmosphere of Venus can be used to demonstrate the danger of extreme global warming on Earth. |       |
|     | State <b>two</b> properties of the atmosphere of Venus responsible for this.                          | (2)   |
| 1.  |                                                                                                       |       |
| 2 . |                                                                                                       |       |
|     | (Total for Question 5 = 5 m                                                                           | arks) |



| 6 | (a) A student observed the star Polaris in the night sky.                                                                            |     |
|---|--------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | (i) In which direction was the student looking?                                                                                      | (1) |
|   | ■ A North                                                                                                                            | (-/ |
|   | ■ B South                                                                                                                            |     |
|   | C East                                                                                                                               |     |
|   | D West                                                                                                                               |     |
|   | (ii) State the declination of Polaris.                                                                                               | (1) |
|   | (iii) The latitude of the student was 55° N.                                                                                         |     |
|   | What was the angle of elevation of Polaris above the student's horizon?                                                              | (1) |
|   | (b) The student observed the constellation Cassiopeia. From the student's latitude, the stars in this constellation are circumpolar. |     |
|   | (i) In the space below, sketch Cassiopeia.                                                                                           | (1) |
|   |                                                                                                                                      |     |
|   |                                                                                                                                      |     |
|   |                                                                                                                                      |     |
|   |                                                                                                                                      |     |
|   |                                                                                                                                      |     |
|   |                                                                                                                                      |     |
|   |                                                                                                                                      |     |
|   |                                                                                                                                      |     |

| (ii)  | What are circumpolar stars?                                                                                                | (1)  |
|-------|----------------------------------------------------------------------------------------------------------------------------|------|
| (iii) | State whether a star of declination +60° would be circumpolar from the student's latitude.  Give a reason for your answer. | (2)  |
|       | (Total for Question 6 = 7 ma                                                                                               | rks) |

| 7 | (a) | An    | astronomer observes sunspots using a telescope fitted with a H-alpha filter.                        |     |
|---|-----|-------|-----------------------------------------------------------------------------------------------------|-----|
|   |     | (i)   | Describe the appearance of the sunspots.                                                            | (1) |
|   |     | (ii)  | Name <b>one</b> other feature that the astronomer might observe.                                    | (1) |
|   |     | (iii) | Why does the H-alpha filter improve the astronomer's observations of the sunspots?                  | (1) |
|   | (b) |       | h the aid of a diagram(s), explain how astronomers use sunspots to determine Sun's rotation period. | (2) |
|   |     |       |                                                                                                     |     |

| (i) [  | Describe the appearance of aurorae.                        |          |
|--------|------------------------------------------------------------|----------|
|        |                                                            | (1)      |
|        |                                                            |          |
| (ii) E | Explain the connection between aurorae and the solar wind. | (2)      |
|        |                                                            |          |
|        |                                                            |          |
|        | (Total for Question 7 =                                    | 8 marks) |
|        | (Total for Question 7 =                                    | 8 marks) |
|        | (Total for Question 7 =                                    | 8 marks) |
|        | (Total for Question 7 =                                    | 8 marks) |
|        | (Total for Question 7 =                                    | 8 marks) |
|        | (Total for Question 7 =                                    | 8 marks) |
|        | (Total for Question 7 =                                    | 8 marks) |

- **8** A group of students were observing the Perseid meteor shower that occurs annually in August. This shower is caused by a short-period comet.
  - (a) Where is the origin of most short-period comets?

(1)

- A Asteroid Belt
- B Kuiper Belt
- C Orion's Belt
- ☑ D Van Allen Belt
- (b) Figure 3 shows the Earth's orbit around the Sun.



Figure 3

- (i) On Figure 3, draw the orbit of a typical short-period comet.
- (ii) On Figure 3, indicate a point at which this meteor shower could occur. Use the letter **P**.

(3)

| (Total for Question 8 = 7                                                                                                 | marks) |
|---------------------------------------------------------------------------------------------------------------------------|--------|
| (d) During their observations, the students also saw a fireball.  What is the difference between a fireball and a meteor? | (1)    |
| (ii) In which constellation does the point for this meteor shower occur?                                                  | (1)    |
| (c) (i) What is the name of the point from which meteors appear to diverge?                                               | (1)    |

**9** (a) What is the approximate diameter of our Galaxy?

(1)

- ☑ B 30 pc

- (b) Figure 4 shows a sketch of our Galaxy.



Figure 4

On Figure 4, indicate the position of:

(3)

- (i) the Sun (use the letter **S**)
- (ii) a typical site of star formation (use the letter **F**)
- (iii) a typical globular cluster (use the letter **G**).

(Total for Question 9 = 4 marks)



**10** A group of students were using a star chart to plan a naked-eye observing session of the region of the sky close to the constellation Pegasus.

Figure 5 shows the Great Square of Pegasus, some other stars and a faint, fuzzy patch of light **X**. Some stars are labelled with Greek letters.



Figure 5

| (a) | In addition to the star chart, state <b>two</b> other <b>sources</b> of information that the |
|-----|----------------------------------------------------------------------------------------------|
|     | students might need in order to plan the observing session.                                  |

(2)

1 \_\_\_\_\_\_

(b) On Figure 5, indicate with an arrow how stars in the Great Square of Pegasus can be used to locate the star Fomalhaut.

(1)

| ate <b>two</b> reasons why the use of such a telescope might improve their servations. | (2)                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| · · · · · · · · · · · · · · · · · · ·                                                  | (2)                                                                                                                                                                                                                                                                                                                      |
| · · · · · · · · · · · · · · · · · · ·                                                  |                                                                                                                                                                                                                                                                                                                          |
|                                                                                        |                                                                                                                                                                                                                                                                                                                          |
| e students planned to observe object <b>X</b> on a future date using a robotic escope. |                                                                                                                                                                                                                                                                                                                          |
|                                                                                        |                                                                                                                                                                                                                                                                                                                          |
| me <b>one</b> other naked-eye observing technique to help observe object <b>X</b> .    | (1)                                                                                                                                                                                                                                                                                                                      |
|                                                                                        |                                                                                                                                                                                                                                                                                                                          |
|                                                                                        |                                                                                                                                                                                                                                                                                                                          |
| nat is averted vision?                                                                 | (1)                                                                                                                                                                                                                                                                                                                      |
| e group of students observed object <b>X</b> with <b>averted vision</b> .              |                                                                                                                                                                                                                                                                                                                          |
| The Pleiades                                                                           |                                                                                                                                                                                                                                                                                                                          |
| Oort Cloud                                                                             |                                                                                                                                                                                                                                                                                                                          |
| Orion Nebular                                                                          |                                                                                                                                                                                                                                                                                                                          |
| Andromeda Galaxy                                                                       |                                                                                                                                                                                                                                                                                                                          |
| nat is the name of faint object <b>X</b> ?                                             | (1)                                                                                                                                                                                                                                                                                                                      |
|                                                                                        | Andromeda Galaxy Orion Nebular Oort Cloud The Pleiades e group of students observed object <b>X</b> with <b>averted vision</b> . nat is averted vision?  The one other naked-eye observing technique to help observe object <b>X</b> .  The students planned to observe object <b>X</b> on a future date using a robotic |

**11** The four images labelled **A** to **D** in Figure 6 show different stages in the evolution of a solar-mass star.



**A** The Pleiades, an open cluster



**B** NGC 281, an emission nebula



**C** The Helix Nebula, a planetary nebula



**D** The Sun, a main sequence star

Figure 6

(a) Arrange the letters of the images in Figure 6 in order of evolution, starting with the youngest.

(3)

(b) What type of object lies at the centre of a planetary nebula?

(1)

(c) Figure 7 shows one stage in the death of a star that has a much greater mass than the Sun.



Figure 7

(i) What is the name of this stage?

(1)

(ii) Name **one** possible type of object that lies at the centre of Figure 7.

(1)

(Total for Question 11 = 6 marks)

| (Total for Question 12 = 6                                                                                      | 5 marks) |
|-----------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                 |          |
|                                                                                                                 |          |
| State <b>two</b> of the factors in the Drake Equation.                                                          | (2)      |
| The Drake Equation can be used to estimate the likelihood of intelligent life existing elsewhere in our Galaxy. |          |
|                                                                                                                 |          |
|                                                                                                                 |          |
| <br>(ii) Explain why astronomers find it difficult to detect <b>marviadal</b> planets.                          | (2)      |
| <br>(ii) Explain why astronomers find it difficult to detect <b>individual</b> planets.                         |          |
|                                                                                                                 |          |
|                                                                                                                 |          |
| (i) Describe <b>two</b> methods that astronomers use to detect the presence of exoplanets.                      | (2)      |
|                                                                                                                 |          |

13 The table below lists the co-ordinates of some of the stars in the constellation Orion.

| star         | RA         | dec / ° |
|--------------|------------|---------|
| $\alpha$ Ori | 5 h 55 min | +7      |
| β Ori        | 5 h 15 min | -8      |
| γ Ori        | 5 h 25 min | +6      |
| δ Ori        | 5 h 32 min | 0       |

| ( | a) | An        | astronomer   | observed  | Orion | from   | the  | UK in   | Decem   | ber.   |
|---|----|-----------|--------------|-----------|-------|--------|------|---------|---------|--------|
| ١ | u, | / \ \ \ \ | astronionici | ODJCI VCG | OHIOH | 110111 | CIIC | O11 111 | DCCCIII | $\sim$ |

Which star appeared:

| (i) | :he highest, |     |
|-----|--------------|-----|
|     |              | (1) |

| (b) | Explain why t | he astronomer | would not be | able to | observe Or | ion from t | he UK in |
|-----|---------------|---------------|--------------|---------|------------|------------|----------|
|     | June.         |               |              |         |            |            |          |

| (2) |
|-----|
|     |
|     |
|     |

| (c) | The astronomer | observed | β Ori when | it crossed h | ner meridian at | 16:40 GMT. |
|-----|----------------|----------|------------|--------------|-----------------|------------|

| (1) | What is meant | by the term <b>me</b> | eridian? |      |      |
|-----|---------------|-----------------------|----------|------|------|
|     |               |                       |          | <br> | <br> |

| (ii) | Deduce the time at which $\alpha$ Ori would cross the astronomer's meridian. |
|------|------------------------------------------------------------------------------|

| <br> | <br> | <br> |  |
|------|------|------|--|
|      |      |      |  |
|      |      |      |  |

(3)

(Total for Question 13 = 7 marks)

| <b>14</b> (a) Our knowledge about the Solar System is greatly increased through the space probes.                           | use of               |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------|
| Describe briefly <b>one</b> major space mission, naming the mission, its 'targe key piece of information that was obtained. | t'and <b>one</b> (3) |
| Mission name                                                                                                                |                      |
| 'Target'                                                                                                                    |                      |
| One piece of information                                                                                                    |                      |
|                                                                                                                             |                      |
|                                                                                                                             |                      |
|                                                                                                                             |                      |
| (b) Manned exploration of the Solar System has so far been restricted to ou immediate neighbourhood.                        | ır                   |
| State <b>two</b> problems that astronauts are likely to face during a manned e to a planet such as Mars.                    | expedition           |
|                                                                                                                             | (2)                  |
| 1                                                                                                                           |                      |
| 2                                                                                                                           |                      |
|                                                                                                                             |                      |
| (Total for Question                                                                                                         | 14 = 5 marks)        |
|                                                                                                                             |                      |

**15** Martha measured the length of the shadow cast by a straight vertical stick at certain times of the day.

Some of her results are shown in the table below.

| Time (GMT) | Shadow length / mm |
|------------|--------------------|
| 11:30      | 527                |
| 11:40      | 512                |
| 11:50      | 505                |
| 12:00      | 494                |
| 12:10      | 480                |
| 12:20      | 495                |
| 12:30      | 502                |

| (a) | Use the table to determine the time at which | n the Sun | appeared to | o be at its l | highest |
|-----|----------------------------------------------|-----------|-------------|---------------|---------|
|     | in the sky.                                  |           |             |               |         |

(1)

(b) On the date that Martha carried out her shadow stick experiment, the Equation of Time was equal to -6 min.

Calculate the Apparent Solar Time at which the Sun was highest in the sky.

Use the formula: Equation of Time = Apparent Solar Time - Mean Solar Time

(2)

(c) Deduce the longitude from where Martha carried out her experiment.

(1)

(d) Martha's friend Jojo carried out a similar experiment from a longitude of 3°W.

At what time (GMT) did the Sun appear highest in the sky to Jojo?

(1)

(Total for Question 15 = 5 marks)

| <b>16</b> (a) State the difference between a binary star and an optical double star. |    |
|--------------------------------------------------------------------------------------|----|
|                                                                                      | (2 |

(b) The table below gives data for four stars in a constellation.

| Star | Apparent magnitude |  |
|------|--------------------|--|
| α    | -0.6               |  |
| β    | 1.4                |  |
| δ    | 4.4                |  |
| 3    | 6.8                |  |

Which is the faintest star that could be seen with the naked eye?

(1)

(ii) How many times does star  $\alpha$  appear brighter than star  $\beta$ ?

(1)

(iii) The distance of star  $\delta$  is 100pc. Calculate the absolute magnitude of  $\delta$ .

Use the formula:  $M = m + 5 - 5 \log d$ 

(2)

(Total for Question 16 = 6 marks)

| <b>17</b> (a) (i) | State <b>one</b> major source of light pollution.                                                    | (1)  |
|-------------------|------------------------------------------------------------------------------------------------------|------|
| (ii               | ) Why does light pollution cause problems for amateur astronomers?                                   | (1)  |
| */L\Tl            |                                                                                                      |      |
|                   | re Greek mathematician Eratosthenes was the first person to determine the recumference of the Earth. |      |
|                   | escribe the observations and the method used by Eratosthenes to determine the orth's circumference.  | e    |
| Yo                | ou may draw a diagram.                                                                               | (5)  |
|                   |                                                                                                      |      |
|                   |                                                                                                      |      |
|                   |                                                                                                      |      |
|                   |                                                                                                      |      |
|                   |                                                                                                      |      |
| Observa           | tions                                                                                                |      |
|                   |                                                                                                      |      |
|                   |                                                                                                      |      |
| Method            |                                                                                                      |      |
|                   |                                                                                                      |      |
|                   |                                                                                                      |      |
|                   | (Total for Question 17 = 7 ma                                                                        | rks) |



| 18 ( | a)  | Why do astronomers use 21 cm radio waves rather than visible light to determine the rotation of our Galaxy? | (1) |
|------|-----|-------------------------------------------------------------------------------------------------------------|-----|
| 1    | b)  | Give <b>three</b> key facts about Cosmic Microwave Background radiation.                                    | (3) |
| 2    |     |                                                                                                             |     |
|      | (c) | Describe how astronomers use the value of the Hubble Constant to determine the age of the Universe.         | (2) |
|      |     | (Total for Question 18 = 6 mar                                                                              | ks) |

19 (a) Figures 8 and 9 show two galaxies, the Andromeda Galaxy and Large Magellanic Cloud respectively.



Figure 8

State the type of galaxy shown in:



Figure 9

(Total for Question 19 = 6 marks)

|     |      |                                                                       | (2) |
|-----|------|-----------------------------------------------------------------------|-----|
|     | (i)  | Figure 8                                                              |     |
|     | (ii) | Figure 9                                                              |     |
| (b) | The  | two galaxies shown in Figures 8 and 9 are members of our Local Group. |     |
|     | Give | e the names of <b>two</b> other galaxies in our Local Group.          | (2) |
|     |      |                                                                       | (2) |
|     | 1    |                                                                       |     |
|     | 2    |                                                                       |     |
| (c) | Son  | ne galaxies are described as 'active'.                                |     |
|     | Give | e <b>two</b> key facts about active galaxies.                         |     |
|     |      |                                                                       | (2) |
|     | 1    |                                                                       |     |

20 Quasars are distant galaxies with high redshifts. (a) Describe briefly how quasars were discovered. (2) (b) An astronomer obtained the following data for an absorption line in the spectrum of a quasar: measured wavelength = 610 nm true wavelength = 460 nm At what fraction of the speed of light is the quasar receding? Use the formula:  $\frac{v}{c} = \frac{\lambda - \lambda_0}{\lambda_0}$ (3)(c) When the astronomer observed another galaxy, she found that its spectrum was blueshifted. What could the astronomer deduce from this? (1) The galaxy is in the southern hemisphere  $\bowtie$  A The galaxy is moving towards us X C The Universe is contracting  $\times$  D The Universe is expanding (Total for Question 20 = 6 marks) **TOTAL FOR PAPER = 120 MARKS** 



**BLANK PAGE**