| Surname             |                |
|---------------------|----------------|
| Other Names Exam    |                |
|                     | ner's Initials |
| Candidate Signature |                |



General Certificate of Secondary Education Foundation Tier January 2011

# Applied Science (Double Award)

APSC/2F



Unit 2 Science for the Needs of Society

## Written Paper

Thursday 13 January 2011 9.00 am to 10.30 am

#### For this paper you must have:

- a ruler.
- You may use a calculator.

## Time allowed

• 1 hour 30 minutes

### Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

### Advice

• In all calculations, show clearly how you work out your answer.



| Examiner's Initials |      |  |  |  |
|---------------------|------|--|--|--|
| Question            | Mark |  |  |  |
| 1                   |      |  |  |  |
| 2                   |      |  |  |  |
| 3                   |      |  |  |  |
| 4                   |      |  |  |  |
| 5                   |      |  |  |  |
| 6                   |      |  |  |  |
| 7                   |      |  |  |  |
| 8                   |      |  |  |  |
| 9                   |      |  |  |  |
| TOTAL               |      |  |  |  |



Answer **all** questions in the spaces provided.

1 Medical scientists need to know how living organisms work.

Living organisms are made up of cells.

**1 (a)** The diagram shows an animal cell.



**1 (a) (i)** Which label on the diagram, **A**, **B** or **C**, shows the nucleus?

Write your answer in the box.

(1 mark)

(1 mark)

**1 (a) (ii)** Which label on the diagram, **A**, **B** or **C**, shows the cytoplasm?

Write your answer in the box.

**1 (b)** All living organisms respire.

Use words from the box to complete the word equation for respiration.

| Carbon dioxide | Hydrogen | Oxygen | Salt | Water |
|----------------|----------|--------|------|-------|
| Glucose +      | →        |        | +    |       |
|                |          |        |      | (3 ma |
|                |          |        |      |       |
|                |          |        |      |       |
|                |          |        |      |       |
|                |          |        |      |       |



| 1 (c)      | Complete the sentences by drawing a ring around the correct line in each box. |                             |                                                           |
|------------|-------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------|
| 1 (c) (i)  | Living organisms respire to release                                           | cells.<br>energy.<br>waste. | (1 mark)                                                  |
| 1 (c) (ii) | The substances needed for respiration                                         | on move into the cells by   | diffusion.<br>active transport.<br>breathing.<br>(1 mark) |
| 1 (d)      | One substance moves in and out of                                             | cells by osmosis.           |                                                           |
|            | Use words from the box to complete                                            | the sentence.               |                                                           |
|            | glucose high                                                                  | low wate                    | er                                                        |
|            | Osmosis is the movement of solute cor                                         | from a near of              | in area of                                                |
|            | solute concentration through a semi-                                          | permeable membrane.         | (3 marks)                                                 |
|            | Turn over for 1                                                               | he next question            |                                                           |
|            |                                                                               |                             |                                                           |
|            |                                                                               |                             |                                                           |
|            |                                                                               |                             |                                                           |
|            |                                                                               |                             |                                                           |
|            |                                                                               |                             |                                                           |
|            |                                                                               |                             |                                                           |

Turn over ►



Aerosol

(2 marks)

Solid dissolved in a liquid

Gas trapped inside a liquid

| 2 (b)       | The nursery nurse wanted to separate some mixtures that the children had made.                                                     |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
|             | Name the method that the nursery nurse could use to separate each of these mixtures:                                               |  |  |
| 2 (b) (i)   | salt and water                                                                                                                     |  |  |
| 2 (b) (ii)  | sand and beads                                                                                                                     |  |  |
| 2 (b) (iii) | sand and water                                                                                                                     |  |  |
| 2 (c)       | Chalk and water is another type of mixture, called a suspension.                                                                   |  |  |
|             | On the diagram, draw circles to represent the position of the particles in a suspension after it has been left to stand overnight. |  |  |
|             | Use (O) to represent the water particles and $(\bullet)$ to represent the chalk particles.                                         |  |  |
|             | Beaker<br>Suspension<br>Key<br>• Chalk particles<br>• Water particles<br>• Water particles                                         |  |  |
| 2 (d)       | A solution of sugar dissolved in water changes if it is left out for several days.                                                 |  |  |
| 2 (d) (i)   | What would happen to the amount of solution after several days?                                                                    |  |  |
|             |                                                                                                                                    |  |  |
|             | (1 mark)                                                                                                                           |  |  |
| 2 (d) (ii)  | Give <b>one</b> reason why this would happen.                                                                                      |  |  |
|             |                                                                                                                                    |  |  |
|             | (1 mark)                                                                                                                           |  |  |
|             | (Than)                                                                                                                             |  |  |
|             |                                                                                                                                    |  |  |
|             | Turn over ▶                                                                                                                        |  |  |



G/J61181/Jan11/APSC/2F

- 3 In Britain, we get about 30% of our electrical energy from coal-burning power stations.
- **3 (a)** The diagram shows how electricity is produced in a coal-burning power station.

Use the words from the box to complete the labels on the diagram.







Turn over ►



| 3 (e) | Some electricity generators do <b>not</b> use fuels to heat water.               |
|-------|----------------------------------------------------------------------------------|
|       | What else could be used to make a turbine spin instead of steam?                 |
|       |                                                                                  |
|       | (1 mark)                                                                         |
| 3 (f) | A coal-burning power station is not very efficient.                              |
|       | Every kilogram of coal contains 219kJ of chemical energy.                        |
|       | In a power station, only 68 kJ of this energy is converted to electrical energy. |
|       | Calculate the efficiency of this power station using the equation in the box.    |
|       | useful electrical energy produced by power station                               |
|       | efficiency = total energy supplied to power station × 100                        |
|       | Show clearly how you work out your answer                                        |
|       |                                                                                  |
|       |                                                                                  |
|       |                                                                                  |
|       |                                                                                  |
|       | Efficiency =%<br>(2 marks)                                                       |
|       |                                                                                  |
|       |                                                                                  |
|       |                                                                                  |
|       |                                                                                  |
|       |                                                                                  |
|       |                                                                                  |
|       |                                                                                  |
|       |                                                                                  |
|       |                                                                                  |

8



G/J61181/Jan11/APSC/2F





Turn over ►

- 4 Humans use other living organisms to make many useful products.
- **4 (a)** The table lists some products that are made from living organisms.

Use the words in the box to complete the table.

| fungus | plant  |
|--------|--------|
| •      |        |
|        | fungus |

| Product     | Organism used to make product |
|-------------|-------------------------------|
| Penicillin  |                               |
| Cotton wool |                               |
| Yoghurt     |                               |

(2 marks)

- 4 (b) Some living organisms are used to make drugs that treat medical conditions.Diabetes is a condition where the human body cannot make insulin.
- 4 (b) (i) Name the organ that produces insulin.

.....

(1 mark)

```
4 (b) (ii) Name the substance in the blood that is controlled by insulin.
```

(1 mark)

4 (b) (iii) How does insulin control the substance that you named in 4(b)(ii)?

(1 mark)



The sentences in the table below show the process of genetic engineering.

Put the sentences in the correct order by writing the numbers, **2**, **3** and **4**, in the correct boxes.

The first sentence has been labelled for you.

|   | The bacteria are grown in large numbers and will now make human insulin.                  |
|---|-------------------------------------------------------------------------------------------|
|   | Every time the bacteria reproduce, the human gene will also be copied into the offspring. |
| 1 | The insulin gene is taken from human DNA.                                                 |
|   | The human gene for insulin is put into bacterial cells.                                   |

```
(2 marks)
```

**4 (b) (v)** Before human insulin was produced using genetic engineering, diabetics were treated with insulin from pigs.

Suggest **one** disadvantage of using insulin from pigs to treat humans with diabetes.

.....

(1 mark)

**4 (c)** Hormones are carried around the body by blood within the circulatory system.

Give the function of each of the following components of the circulatory system.

**4 (c) (i)** The heart:

4 (c) (ii) Red blood cells:

4 (c) (iii) Platelets:

(1 mark)





- 5 Scientists have discovered that the Earth's atmosphere is very different from what it was 4500 million years ago.
- **5** (a) The Earth's atmosphere contains a mixture of gases.

Complete the table which shows some of these gases.

| Gas            | Formula          |
|----------------|------------------|
|                | CH <sub>4</sub>  |
| Ammonia        | NH <sub>3</sub>  |
| Steam          | H <sub>2</sub> O |
| Carbon dioxide |                  |

(2 marks)

- **5 (b)** There is very little steam in the Earth's atmosphere now because the steam cooled down and became liquid water.
- 5 (b) (i) Suggest where most of the water went.

|          |                                                              | (1 mark)  |
|----------|--------------------------------------------------------------|-----------|
| (b) (ii) | Oxygen can be made by breaking up water molecules.           |           |
|          | Complete the chemical equation for this process.             |           |
|          | $2H_2O \rightarrow \dots + 2 \dots$<br>Water Oxygen Hydrogen | (2 marks) |



**5 (c)** The graphs show that around 400 million years ago the levels of carbon dioxide and oxygen in the Earth's atmosphere changed.



Turn over ►



## 6 Doctors can diagnose and treat certain diseases using radioactive substances.

The main types of nuclear radiation given out by radioactive substances are alpha, beta and gamma.

Information about alpha, beta and gamma radiation is given in the table.

| Radiation | Charge | Stopped by               | Shielding material                 |
|-----------|--------|--------------------------|------------------------------------|
| Alpha     | +2     | Thin sheet of paper      | Paper, skin, clothes               |
| Beta      | -1     | Thin sheet of aluminium  | Thick plastic, glass, light metals |
| Gamma     | 0      | Many centimetres of lead | Dense material, concrete, earth    |

6 (a) Use the words in the box to complete the sentences about the main types of radiation.

Alpha Beta Gamma

..... radiation is not a particle, but an electromagnetic wave.

..... particles are the same as a helium nucleus.

..... particles are high-speed electrons.

(2 marks)

**6 (b)** People who work with radioactive substances wear a film badge to monitor their exposure to radiation.

The diagram shows a film badge.





|             | Use the information in the table to help you to complete the sentences that desc<br>how a film badge works. | ribe                |
|-------------|-------------------------------------------------------------------------------------------------------------|---------------------|
|             | Film badges contain two photographic films. One film is under a thin sheet of alun                          | ninium,             |
|             | and this only detects radiation.                                                                            |                     |
|             | The other film is under a thin sheet of plastic, and detects                                                |                     |
|             | and radiation.                                                                                              |                     |
|             | radiation cannot be detected by this type of badge. (4                                                      | <sup>l</sup> marks) |
| 6 (c)       | Gamma radiation is used to sterilise plastic medical equipment.                                             |                     |
| 6 (c) (i)   | What does <i>sterilise</i> mean?                                                                            |                     |
|             |                                                                                                             |                     |
|             |                                                                                                             |                     |
|             | (                                                                                                           | 1 mark)             |
| 6 (c) (ii)  | Give <b>one</b> reason why gamma radiation can be used for sterilising plastic medica equipment.            | I                   |
|             |                                                                                                             |                     |
|             |                                                                                                             |                     |
|             | (                                                                                                           | 1 mark)             |
| 6 (c) (iii) | Give <b>one</b> reason why heat <b>cannot</b> be used to sterilise plastic medical equipmen                 | t.                  |
|             |                                                                                                             |                     |
|             |                                                                                                             | í1 mark)            |
| 6 (c) (iv)  | Suggest why some people might be worried by the use of gamma radiation to st                                | erilise             |
|             | medical equipment.                                                                                          |                     |
|             |                                                                                                             |                     |
|             |                                                                                                             | 1 mark)             |
|             | ·                                                                                                           | ,                   |
|             |                                                                                                             |                     |
|             |                                                                                                             |                     |
|             |                                                                                                             |                     |



Turn over ►





7 (b) A sports scientist monitored an athlete's breathing rate during a training course.

The data collected is shown in the table.

|             | Breathing rate                                                                                                                     | Start of training | After 1 week<br>of training | After 2 weeks of training | After 4 weeks of training | End of training |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|---------------------------|---------------------------|-----------------|
|             | At rest                                                                                                                            | 12                | 12                          | 12                        | 10                        | 10              |
|             | After 10 minutes of exercise                                                                                                       | 55                | 53                          | 49                        | 46                        | 40              |
| 7 (b) (i)   | Suggest appropriate units for recording breathing rate.                                                                            |                   |                             |                           |                           |                 |
| 7 (b) (ii)  | (1 mark) The athlete's breathing rate after 10 minutes of exercise was lower at the end of training than at the start of training. |                   |                             |                           |                           |                 |
|             | What was the percentage decrease?                                                                                                  |                   |                             |                           |                           |                 |
|             |                                                                                                                                    |                   |                             |                           |                           |                 |
|             |                                                                                                                                    |                   |                             |                           |                           |                 |
|             |                                                                                                                                    |                   |                             |                           |                           |                 |
|             |                                                                                                                                    |                   | Breathing                   | rate decrease =           |                           | %<br>(3 marks)  |
| 7 (b) (iii) | Explain how the da athlete's fitness.                                                                                              | ta in the ta      | ble could show              | that the training         | programme imp             | proved the      |
|             |                                                                                                                                    |                   |                             |                           |                           |                 |
|             |                                                                                                                                    |                   |                             |                           |                           |                 |
|             |                                                                                                                                    |                   |                             |                           |                           | (2 marks)       |
|             |                                                                                                                                    |                   |                             |                           |                           |                 |
|             |                                                                                                                                    |                   |                             |                           |                           |                 |



Turn over ►

| 8           | Limestone is used to make slaked lime. Farmers use slaked lime on their fields to neutralise acids in rainwater. |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------|--|--|
| 8 (a)       | Limestone is made of calcium carbonate.                                                                          |  |  |
|             | What is the chemical formula for calcium carbonate?                                                              |  |  |
|             |                                                                                                                  |  |  |
|             | (1 mark)                                                                                                         |  |  |
| 8 (b)       | Limestone is converted to quicklime in a lime kiln.                                                              |  |  |
| 8 (b) (i)   | What process is used to convert limestone to quicklime?                                                          |  |  |
|             |                                                                                                                  |  |  |
|             |                                                                                                                  |  |  |
|             | (1 mark)                                                                                                         |  |  |
| 8 (b) (ii)  | Name the gas that is given off when limestone is converted to quicklime.                                         |  |  |
|             | (1 movie)                                                                                                        |  |  |
|             | (T mark)                                                                                                         |  |  |
| 8 (b) (iii) | What environmental problem is caused by this gas?                                                                |  |  |
|             | (1 mark)                                                                                                         |  |  |
| 8 (c)       | Quicklime is converted into slaked lime by adding water.                                                         |  |  |
|             | An exothermic reaction takes place.                                                                              |  |  |
| 8 (c) (i)   | Complete the symbol equation for the conversion of quicklime to slaked lime                                      |  |  |
| 0 (0) (1)   |                                                                                                                  |  |  |
|             | $+ \Pi_2 O \rightarrow \dots $ (2 marks)                                                                         |  |  |
| 8 (c) (ii)  | What is an exothermic reaction?                                                                                  |  |  |
|             |                                                                                                                  |  |  |
|             |                                                                                                                  |  |  |
|             | (1 mark)                                                                                                         |  |  |
|             |                                                                                                                  |  |  |
|             |                                                                                                                  |  |  |
|             |                                                                                                                  |  |  |
|             |                                                                                                                  |  |  |



| 8 (d) | Limestone can also be used in the manufacture of glass.           |           |  |
|-------|-------------------------------------------------------------------|-----------|--|
|       | What <b>two</b> ingredients are added to limestone to make glass? |           |  |
|       | 1                                                                 |           |  |
|       | 2                                                                 |           |  |
|       |                                                                   | (2 marks) |  |

Turn over for the next question



Turn over ►

- **9** Astronomers are looking to see if there could be life on other objects in the Solar System.
- **9 (a)** Astronomers use infrared telescopes to measure the temperatures of objects in space because they want to know if the temperature is right for liquid water to be present.

The table shows information about some objects in the Solar System.

| Object  | Distance from the Sun<br>in millions of kilometres | Average temperature<br>in °C |
|---------|----------------------------------------------------|------------------------------|
| Mercury | 60                                                 | 470                          |
| Venus   | 110                                                | 450                          |
| Earth   | 150                                                | 10                           |
| Mars    | 230                                                | -40                          |
| Jupiter | 780                                                | -150                         |
| Saturn  | 1430                                               | -180                         |
| Uranus  | 2870                                               |                              |
| Neptune | 4500                                               | -200                         |
| Pluto   | 5910                                               | -220                         |





Turn over ►



G/J61181/Jan11/APSC/2F

| 9 (b)      | Infrared telescopes are usually in space on satellites above the Earth.                                     |
|------------|-------------------------------------------------------------------------------------------------------------|
|            | Give <b>two</b> advantages of using a telescope on a satellite rather than on the surface of the Earth.     |
|            | 1                                                                                                           |
|            | 2                                                                                                           |
|            | (2 marks)                                                                                                   |
| 9 (c)      | Astronomers have noticed that the frequency of infrared waves coming from the stars is lower than expected. |
| 9 (c) (i)  | Why is the frequency of infrared waves lower than expected?                                                 |
|            |                                                                                                             |
| 9 (c) (ii) | (1 mark) What has this evidence led astronomers to believe is happening to the Universe?                    |
|            | (1 mark)                                                                                                    |
|            | END OF QUESTIONS                                                                                            |
|            |                                                                                                             |
|            |                                                                                                             |
|            |                                                                                                             |











Copyright © 2011 AQA and its licensors. All rights reserved.