Surname

Centre Number

0

Candidate Number

Other Names

GCSE

0241/01

ADDITIONAL SCIENCE FOUNDATION TIER **PHYSICS 2**

A.M. WEDNESDAY, 30 January 2013

45 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	3				
2.	3				
3.	5				
4.	4				
5.	2				
6.	4				
7.	5				
8.	4				
9.	5				
10.	4				
11.	5				
12.	6				
Total	50				

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

A list of equations is printed on page 2 of the examination paper. In calculations you should show all your working.

EQUATIONS

Resistance	=	voltage current
Current	=	power voltage
Speed	=	distance time
Acceleration (or deceleration)	=	resultant force mass
Acceleration	=	change in speed time
Work done	=	force × distance

Answer all questions.

3

1.

The diagram shows the inside of an electric plug.

(a) Complete the following sentences by inserting the correct letter from the diagram in the boxes provided.

	(i) The earth wire is connected to the earth pin .	[1]
	(ii) The blue wire is connected to the pin.	[1]
(b)	Explain why 3-pin plugs are made of plastic or rubber.	[1]

 $\begin{array}{c} 0241 \\ 010003 \end{array}$

Examiner only

(a)	Back									
	• So	me rocks on Earth are r	adioactiv	e.						
	• Ra	adioactive rays shower d	own upoi	n us from	space.					
	• Nı	clear power stations ad	d a small	amount	to natu	ire's ra	dioacti	ivity.		
	Expl belo	ain, giving a clear reaso w contains the most trut	on for yo h.	ur answe	r, whic	ch one	of the	followiı	ng statem	nents [2]
	(i)	Background radiation	is comple	etely harr	nless.					
	(ii)	Background radiation	can caus	e harm b	ut very	few p	eople a	re affect	ted by it.	
	(iii)	Background radiation	will kill ı	18.						
(b)	The read	table shows readings of ings are all taken in the Counts in one minute	backgro same plac	und radia ce. 20 28	ation, 1	taken	using a	Geiger	counter.	The
(b)	The read	table shows readings of ings are all taken in the Counts in one minute Calculate the mean ba	backgro same plac 27 2 ckground	und radia ce. 20 28 I count in	ation, t 18	taken 15 ninute.	using a	Geiger	counter.	The
(b)	The read	table shows readings of ings are all taken in the Counts in one minute Calculate the mean ba	backgro same place 27 2 ckground	und radia ce. 20 28 I count in Mean cou	ation, t 18 18 10 one m unt =	15	using a	Geiger	counter. ts per mi	The [2]
(b)	The read (i)	table shows readings of ings are all taken in the Counts in one minute Calculate the mean ba Why do you think the	backgro same place 27 2 ckground numbers	und radia ce. 20 28 I count ir Mean cou	ation, t 18 a one m unt = rent?	15	using a	Geiger	counter. ts per mi	The [2]
(b)	The read (i)	table shows readings of ings are all taken in the Counts in one minute Calculate the mean ba Why do you think the Put a tick (✓) in the box are different.	backgro same place 27 2 ckground numbers c next to t	und radia ce. 20 28 I count in Mean cou are diffe: he staten	ation, t 18 18 18 18 18 18 18 18 18 18	15 ninute.	using a	Geiger	counter. ts per mi	The [2] inute ibers [1]
(b)	The read (i)	table shows readings of ings are all taken in the Counts in one minute Calculate the mean ba Why do you think the Put a tick (✓) in the box are different. Experimental error.	backgro same place 27 2 ckground numbers a next to t	und radia ce. 20 28 I count ir Mean cou are diffe he staten	ation, t 18 18 a one m unt = rent? hent wh	15 ninute.	using a	Geiger	counter. ts per mi	The [2] inute ibers [1]
(b)	The read (i)	table shows readings of ings are all taken in the Counts in one minute Calculate the mean ba Why do you think the Put a tick (✓) in the box are different. Experimental error. Different numbers of r are being produced ead	backgro same place 27 2 ckground numbers a next to t radioactive ch minute	und radia ce. 20 28 I count in Mean cou are diffe: he staten ze particle	ation, t 18 18 10 one m unt = rent? nent wh es	15 ninute.	using a	Geiger	counter. ts per mi	The [2] inute lbers [1]
(b)	The read (i)	table shows readings of ings are all taken in the Counts in one minute Calculate the mean ba Why do you think the Put a tick (✓) in the box are different. Experimental error. Different numbers of r are being produced ead The readings were take	backgro same place 27 2 ckground numbers anumbers anext to t radioactive ch minute en at diffe	und radia ce. 20 28 I count in Mean cou are diffe he staten re particle e. erent time	ation, t 18 18 10 one m unt = rent? nent wh es es of da	15 ninute.	using a	Geiger	counter. ts per mi	The [2] inute lbers [1]

Cooker part Rating (W) Oven 3000 Grill 2000 Rings 1400 (a)All parts of the cooker are being used at the same time. Calculate the total power required in W. [1] Power = W The cooker is connected to the 230 V mains. (b)Use the equation power current = voltage to find the current in the cooker circuit when all parts of the cooker are being used. [2] Current = A The cooker circuit is connected to its own circuit breaker. (c)Give a reason why a 20 A miniature circuit breaker (m.c.b.) would not be used to protect the whole circuit. [1]

4. The power ratings of parts of an electric cooker are given below.

.....

Examiner only

2

 $\begin{array}{c} 0241 \\ 010007 \end{array}$

[2]

7

Explain why radioactive waste is expensive to dispose of safely.

5.

The diagram shows the position of a ball as it rolled down a track. The ball took 0.5 s to roll from one position to the next. For example, it rolled from **A** to **B** in 0.5 s and from **B** to **C** in 0.5 s and so on.

(ii) Write down the time taken by the ball to reach **E**.

(b) Use the equation

speed =
$$\frac{\text{distance}}{\text{time}}$$

to calculate the mean speed of the ball rolling from A to E.

Mean speed = m/s

[1]

[2]

7. The circuit below may be used to find the resistance of a coil of wire.

5

Examiner only

Examiner only

[1]

8. Read the information in the box before answering the questions that follow.

Nuclear medicine uses radioactive tracers to find out what is wrong with a patient. Gamma emitting radioactive materials, with a short half-life, are used as tracers to examine blood flow in a patient's body. One tracer used is technetium-99 (Tc-99). It has a half-life of 6 hours. It only emits low energy gamma rays, which easily escape the body to be detected by gamma ray cameras. These cameras feed information to a computer which builds up a picture of the path taken by the tracer through the patient's body. Tc-99 can be given to a patient by mouth or by injection. It produces no discomfort and

after a few days there is no sign that the test was ever done.

(a) State how a picture of the path taken by the radioactive tracer is produced.

(b) Give **one** reason why Tc-99 is a suitable material to use as a radioactive tracer. [1]

- (c) The patient was given an injection, part of which contained 1 280 undecayed atoms of Tc-99.
 - (i) How many of these atoms will have decayed after 6 hours? **Circle** the correct answer. [1]

1 280 640 320 160 80

(ii) How long will it take for only 80 undecayed atoms to remain in the patient? [1]

Time =..... hours

9. The graph shows part of the motion of an underground train as it travels from one station to the next. It takes 60s to travel between the two stations. After 20s the train travels at a constant speed of 25 m/s for 30s before decelerating steadily to rest under the action of its brakes.

5

Examiner only **10.** A radioactive source emitting alpha, beta and gamma radiations was placed in front of a detector. The three diagrams show how the count rate in counts per minute (cpm) changed when different absorbers were placed between the source and the detector.

4

Examiner only

(0241-01)

The	diagra	m below shows some of the forces acting on a car of mass 800 kg.	E	Examine only
		direction of motion		
		driving force 2000 N total drag force		
(a)	The	car is travelling at constant speed . State the size of the total drag force.	[1]	
(b)	The	driving force is now increased to 3200 N.	N	
	(i)	Find the resultant force on the car at this instant.	[1]	
	(ii)	Select and write down an equation from page 2 and use it to calculate the acceleration of the car.	he initial	
			[1]	
		Acceleration =	m/s ² [2]	

5

11.

12. The diagram shows part of the household lighting circuit joined into the fusebox.

13

END OF PAPER

6

Examiner