GCSE MARKING SCHEME

SCIENCE - PHYSICS (LEGACY)

SUMMER 2012

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2012 examination in GCSE SCIENCE - PHYSICS (LEGACY). They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

PHYSICS 1 (LEGACY)

FOUNDATION TIER

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 1. \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& \begin{tabular}{l}
Totally internally reflected (1) ...more than... (1) refracted (1) less than.... (1) \\
Question total
\end{tabular} \& [4] \\
\hline 2. \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Complete orbit drawn nearer the Earth's than to Saturn's. \\
Jupiter, Uranus, or Neptune \\
Saturn is further from [the Sun] or Earth is closer. \\
A collection of rocks [with sizes smaller than that of the smallest planet] in an orbit (1) around the Sun between the orbits of Mars and Jupiter (1) [could credit in (c)(i)] \\
Question total
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1 \\
2 \\
[5]
\end{tabular} \\
\hline 3. \& (a)
(b) \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Conduction (1) \\
Convection (1) \\
Glass fibre is a good insulator / traps air (1) reduces heat loss / keeps more heat in (1) \\
Question total
\end{tabular} \& \begin{tabular}{l}
2 \\
2 \\
[4]
\end{tabular} \\
\hline 4. \& \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
Reduces heat / energy loss in the cables / not much voltage drop in the cables (1) \\
Step-down transformers (1) \\
To give a consistent / reliable supply [to everyone] / support for breakdowns etc (1) \\
Question total
\end{tabular} \& \begin{tabular}{l}
3 \\
[3]
\end{tabular} \\
\hline 5. \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& (i)
(ii) \& \begin{tabular}{l}
\(\left[\mathrm{CO}_{2}\right.\) produces] global warming / greenhouse effect (1) [\(\mathrm{SO}_{2}\) produces] acid rain (1) \\
Cooling required / prevents overheating / to produce steam (1) Transport of coal / fuel / removal of waste (1) \\
Question total
\end{tabular} \& 2

2
[4]

\hline
\end{tabular}

Physics 1 (Legacy) Foundation Tier (Contd.)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 6. \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& \begin{tabular}{l}
Wasted energy \(=1000-876-100=24[\mathrm{~J}]\)
\[
\text { Efficiency }=\frac{976}{1000} \times 100=97.6[\%]
\] \\
[976 (1) subs(1); ans (1)] Accept 98\% \\
[Award 2 marks only for answers of \(10 \%\) / \(87.6 \% / 97 \%\)] \\
No ecf from (a) \\
Question total
\end{tabular} \& 1

3
[4]

\hline 7. \& | (a) |
| :--- |
| (b) | \& | (i) |
| :--- |
| (ii) | \& | wavelength $=4[\mathrm{~m}](1)$ |
| :--- |
| amplitude $=50[\mathrm{~cm}](1)$ |
| Frequency $=\frac{2.8}{4}=0.7[\mathrm{~Hz}][$ subs (1); ans (1)] ecf from (a)(i) |
| Question total | \& | 2 |
| :--- |
| 2 |
| [4] |

\hline 8. \& | (a) |
| :--- |
| (b) |
| (c) | \& | (i) |
| :--- |
| (ii) |
| (i) |
| (ii) | \& | $0.5[\mathrm{~kW}]$ |
| :--- |
| No. of $\mathrm{kWh}=0.5$ ecf $\times 5 \times 14=35$ |
| [Subs (1); ans (1)] $\text { Cost }=35 \text { ecf } \times 8=280[\mathrm{p}] / £ 2.80$ |
| Less power / less energy / not as many Watts / less units of electricity |
| New cost $=\frac{1}{5} \times 280$ ecf [p] [or $0.1 \times 5 \times 14 \times 8$] $=56[\mathrm{p}](1)$ |
| Saving $=280-56$ ecf $=224[\mathrm{p}][\mathrm{ans}](1)$ |
| Question total | \& | 1 |
| :--- |
| 2 |
| 1 |
| 1 |
| 2 |
| [7] |

\hline 9. \& | (a) |
| :--- |
| (b) | \& | (i) |
| :--- |
| (ii) | \& | Plastic / glass containers allow microwaves to pass through them (2) or metal containers reflect microwaves / produce sparks / don't allow microwaves to pass through them (2) |
| :--- |
| Microwave energy causes the water to be heated rapidly |
| Any $2 \times(1)$ from |
| - different wavelength / frequency \checkmark |
| - greater penetration \checkmark |
| - ionises / damages cells of the body \checkmark |
| - transfer more energy |
| Question total | \& | 2 1 |
| :--- |
| 2 |
| [5] |

\hline
\end{tabular}

Physics 1 (Legacy) Foundation Tier (Contd.)

Question			Marking details	Marks Available
10.	(a) (b) (c) (d)	(i) (ii)	8 [hours] 10 [GW] A period of low demand from users Source of energy [falling water] at the flick of a switch or no time needed for the source to warm up Reduces base load / produces less power by closing down for maintenance or reducing output further Question total	1 1 1 1 1 [5]
11.	(a) (b) (c)		Gravitational attraction / gravity Both produced by fusion / hydrogen to helium or heavier elements / atoms forced together (1) with a release of [a large amount] of energy $/$ heat and light (1) Balanced forces (1) Named forces (1) Question total	1 2 2 [5]
			Total Foundation paper	50

PHYSICS 1 (LEGACY)

HIGHER TIER

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 1. \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Plastic / glass containers allow microwaves to pass through them (2) or metal containers reflect microwaves / produce sparks / don't allow microwaves to pass through them (2) \\
Microwave energy causes the water to be heated rapidly \\
Any \(2 \times(1)\) from \\
- different wavelength / frequency \(\checkmark\) \\
- greater penetration \(\checkmark\) \\
- ionises / damages cells of the body \\
- transfer more energy \\
Question total
\end{tabular} \& 2

1

2
[5]

\hline 2. \& | (a) |
| :--- |
| (b) |
| (c) |
| (d) | \& | (i) |
| :--- |
| (ii) | \& | 8 [hours] |
| :--- |
| 10 [GW] |
| A period of low demand from users |
| Source of energy [falling water] at the flick of a switch or no time needed for the source to warm up |
| Reduces base load / produces less power by closing down for maintenance or reducing output further |
| Question total | \& | 1 |
| :--- |
| 1 |
| 1 |
| 1 |
| [5] |

\hline 3. \& | (a) |
| :--- |
| (b) |
| (c) |
| (d) | \& (i)

(ii) \& | Gravitational attraction / gravity |
| :--- |
| Both produced by fusion / hydrogen to helium or heavier elements / atoms forced together (1) with a release of [a large amount] of energy / heat and light (1) |
| Balanced forces (1) |
| Named forces (1) |
| $19^{\text {th }}$ century model used the idea of chemical reaction / energy (burning) [produce the heat and light generated by the star] (1). A short finite life of a few thousand years was predicted (1) |
| Geologists discovered that the Earth was millions of years old. |
| Question total | \& 1

2

2

2

1
[8]

\hline
\end{tabular}

Physics 1 (Legacy) Higher Tier (Contd.)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 4. \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
7 [kW] (1) \\
3 [kW] (1) \\
[Total] heat lost \((10 \mathrm{~kW})=[\) Total] heat gained \((10 \mathrm{~kW})\) \\
Heat now lost by convection [as well as conduction and radiation] /more heat lost than gained. (1) \\
\(\operatorname{Rad}=1.4[\mathrm{~kW}] ;\) Cond \(=4[\mathrm{~kW}] ;\) Conv \(=8[\mathrm{~kW}][(1)\) for all readings correct] Total \(=13.4\) [kW] [(1) for the correct addition of 3 readings] x 1000 or presence of kW (1)
\[
22^{\circ} \mathrm{C}
\] \\
Question total
\end{tabular} \& \begin{tabular}{l}
2 \\
1 \\
4 \\
1 \\
[8]
\end{tabular} \\
\hline 5. \& (a)

(b) \& \& \[
$$
\begin{aligned}
& \% \text { Efficiency }=\frac{168000(1)}{198000} \times 100=84.8[\%] \text { accept } 85 \% / 84.85 \% \\
& \text { Subs }(1) ; \text { Ans }(1) \\
& \text { [Award } 2 \text { marks for } 84.84 \%] \\
& \text { Energy }=\text { Power } \times \text { time }(1) \\
& 198000=2200 \times \text { time } x 1000 \text { or } / 1000(1) \\
& \text { Time }=\frac{198000}{2200}=90[\mathrm{~s}] \text { subs/manip }(1) ; \text { ans }(1) \\
& \text { Alternatives: } \\
& \frac{198}{2.2}=90[\mathrm{~s}] \rightarrow 3 \text { marks } \\
& \frac{168000}{2200} \rightarrow 2 \text { marks } \\
& \frac{168}{2.2} \rightarrow 2 \text { marks } \\
& \frac{198}{2200} \rightarrow 1 \text { mark } \\
& \frac{198000}{2.2} \rightarrow 1 \text { mark } \\
& \frac{168}{2200} \rightarrow 0 \text { marks }
\end{aligned}
$$

\] \& | 3 |
| :--- |
| 1 |
| 3 |

\hline
\end{tabular}

Physics 1 (Legacy) Higher Tier (Contd.)

Question			Marking details	Marks Available
6.	(a) (b) (c)	(i) (ii) (i) (ii)	Reduces convection [losses] / traps radiation Black surfaces are better / good absorbers of radiation / infra-red so temperature increases. Maximum power $=2.4[\mathrm{~kW}](1)$ Minimum power $=0.96[\mathrm{~kW}](1)$ Award 1 mark for $2400 \& 960$ Award 1 mark for $4.8 \& 1.92$ Average of maximum and minimum powers shown ecf (1) 1.68 ecf x $10=16.8[\mathrm{kWh}](1)$ Any 2 x (1) from: - Average power of sunlight greatly reduced in winter - Sunlight is available for less day time - Energy delivered much less - Outside temperature is colder - Water starts off colder so requires more heat to be supplied to it Question total	1 1 2 2 2 [8]
7.	(a)	(b)	Wave speed decreases as the frequency increases (1); non-linearly / inversely proportional (1) $\text { speed }=\frac{\text { distance }}{\text { time }}=\frac{311000}{12 \times 60 \times 60}=7.20[\mathrm{~m} / \mathrm{s}]$ Subs (1); conversion (1); ans (1) From graph speed $=7.20$, frequency $=0.22[\mathrm{~Hz}](1)$ $\begin{aligned} & v=f \lambda, 7.22=0.22 \text { ecf } \lambda \\ & \lambda=\frac{7.22}{0.22}=32.73[\mathrm{~m}] \end{aligned}$ Subs (1); manipulation (1); ans (1) No penalty for incorrect rounding throughout. Question total	2
			Total Higher Tier	50

PHYSICS 2-FOUNDATION TIER

Question			Marking details	Marks Available
1.	(a) (b)	$\begin{gathered} \text { (i) } \\ \text { (ii) } \\ \text { (iii) } \end{gathered}$	gamma (1) [accept: γ, gama] gamma (1) [accept: γ, gama] alpha (1) [accept: α, alfa, alffa] Any $2 \times(1)$ from: reduce exposure time (\checkmark), protective clothing (\checkmark), barrier (\checkmark), breathing apparatus (\checkmark), handling equipment (1), monitoring equipment (\checkmark) [One mark available for each line - if one line is blank, 2 marks are available for the other line] Question total	3 2 [5]
2.	(a) (b)	(i) (ii) (iii) (iv)	10% cosmic [accept: rays from the sun] nuclear power stations only contribute a very small part, or equiv [must recognise the low level contribution] - accept the converse argument. 30 [cpm] radon gas levels vary / difference in rock type / altitude [Not just: proximity to radiation source] Notes: Context must be correct if given, e.g. Limestone is more radioactive x Granite / igneous rocks more radioactive \checkmark It depends if there are radioactive substances in the area $-x$ not specific enough. Question total	1 1 1 1 1 [5]
3.	(a) (b) (c)		Lamp $\frac{920}{230}(1)=4[\mathrm{~A}]$ (1) [correct answer $\rightarrow 2$ marks] $13,3,13$ in last three cells Question total	1 2 1 [4]

Physics 2 (Legacy) Foundation Tier (Contd.)

Question			Marking details	Marks Available
4.	(a) (b) (c) (d)	(i) (ii) (i) (ii)	A and V in correct places [accept a and v] $R=\frac{2}{4}(1 \mathrm{subst})=0.5[\Omega](1 \mathrm{ans})$ variable resistor [accept: rheostat / reostat] variable resistor (ecf on name) altered in steps [Accept: change the resistance / the resistance changes the current] 2 [V] [accept $2-2.1]$ line curves beyond that point / it is straight only up to 2 V [accept a resistance calculation up to 2 V and at a higher voltage] Notes: The description of the change must be clear, e.g. not: the current starts to slow down x not increase in current slows down x but the current increases at a slower rate $-\checkmark$ b.o.d. Question total	1 2 1 1 [7]
5.	(a) (b)		$\begin{aligned} & a=\frac{12}{4}(1 \mathrm{subs})=3(1 \mathrm{ans}) \quad \text { Unit: } \mathrm{m} / \mathrm{s}^{2}(1) \\ & F=90 \times 3 \operatorname{ecf}(1 \mathrm{subs})=270[\mathrm{~N}](1) \end{aligned}$ Question total	3 2 [5]

Physics 2 (Legacy) Foundation Tier (Contd.)

Question			Marking details	Marks Available
6.	(a) (b)		$W=500000 \times 0.9(1)=450000[\mathrm{~J}](1)$ Any $2 \times(1)$ from - crumple zone \checkmark [not crumble zone!] - air bag \checkmark - rigid [accept strong] passenger cell \checkmark Question total	2 2 [4]
7.	(a) (b)	(i) (ii)	stays the same [accept: is constant](1) increases [accept: gets bigger] (1) equal to (1) decelerates (1) to a [new] constant speed (1) Question total	3 2 [5]
8.	(a) (b)		all points plotted \pm half square (2×1) deduct 1 mark for each wrong plot [min 0], smooth curve [ignore t>20 hrs] (1) 7 ± 0.5 [h] [for incorrect graphs, take the graph reading $\pm 0.5 \mathrm{~h}$] Question total	3 1 [4]
9.	(a) (b) (c)		takes current [accept: electricity] to ground / earth [Accept: prevents metal casings becoming live / stops the current going through the user / stops them getting electrocuted / an electric shock] Notes: The explanation must not have an incorrect context, e.g. not if there is too much current x not prevents fire x Context mark: difference in live and neutral currents (1) Effect mark: makes it turn off [all] household circuits [accept: appliance] / operates a magnetic switch (1) 'Stops the current' accept for the $2^{\text {nd }}$ mark. Notes: Effect mark can only be given if the context mark is given. Quick[er] acting [however expressed](1) [accept 'straight away'] more sensitive [however expressed] (1) Question total	1 2 2 [5]

Physics 2 (Legacy) Foundation Tier (Contd.)

HIGHER TIER

Question		Marking details	Marks Available
1.	(a) (b) (c)	all points plotted \pm half square (2×1) deduct 1 mark for each wrong plot [min 0], smooth curve [ignore t>20 hrs] (1) 7 ± 0.5 [h] [for incorrect graphs, take the graph reading $\pm 0.5 \mathrm{~h}$] yes because:[it is a gamma emitter] - so it escapes the body / can be detected outside [accept: low ionizing / highly penetrating] (1), suitably short half life (1) Question total	1 2 [6]
2.	(a) (b) (c)	takes current [accept: electricity] to ground / earth [Accept: prevents metal casings becoming live / stops the current going through the user / stops them getting electrocuted / an electric shock] Notes: The explanation must not have an incorrect context, e.g. not If there is too much current x not prevents fire x Context mark: difference in live and neutral currents (1) Effect mark: makes it turn off [all] household circuits [accept: appliance] / operates a magnetic switch (1) 'Stops the current' accept for the $2^{\text {nd }}$ mark. Notes: Effect mark can only be given if the context mark is given. Quicker acting [however expressed](1) [accept 'straight away'] more sensitive [however expressed] (1) Question total	1 2 2 [5]

Physics 2 (Legacy) Higher Tier (Contd.)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 3. \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& (i) \& \begin{tabular}{l}
\[
\mathrm{t}==\frac{9(1)}{15}[1 \text { mark for ' } 9 \text { ' taken from graph }]=0.6[\mathrm{~s}](1)
\] \\
Notes: ' 9 ' in the answer space does not score \\
\(42(1)-12(1)=30[\mathrm{~m}]\) [correct answer, only, implies correct working] \\
Notes: Credit \(42(\checkmark)\) and \(12(\checkmark)\) and \(30(\checkmark \checkmark)\) in the working space, but if 30 is further manipulated to give a final incorrect answer, 1 mark is given. \\
Do not credit 42 or 12 in the answer line \(-x\) If correct distances are added - 1 mark only. because the total stopping distance increases as a curve / because the graphs are not straight. \\
Notes: If numerical answer for \(10 \mathrm{~m} / \mathrm{s}\) given [braking distance 7.5 m] credit only if a suitable comment is given, e.g. 'this is not / less than half the \(20 \mathrm{~m} / \mathrm{s}\) value' \\
[The driver is] tired / drunk / drugged / distracted (e.g. phone / inattentive) / old aged [accept just: alcohol] \\
Question total
\end{tabular} \& \begin{tabular}{l}
2 \\
2 \\
1 \\
1 \\
[6]
\end{tabular} \\
\hline 4. \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(i)

(ii)

(iii)

 \&

gamma [nuclear radiation - not enough]

Repeat the experiment / carry out similar experiments

Publish his results / allow others to verify / share outcomes [however expressed, e.g. patent the experiment]

Note: 'Recording' - not enough

When inhaled (1) radon emits alpha particles [inside the body] (1) which cannot escape [the body] [not just 'cannot get through the skin']/ are [highly] ionising / damage DNA / damage cells [not destroy cells] (1) [not just: 'causes cancer].

Notes: It must be clear that radon enters the body and alpha [particles] cause the ionisation

Seal floors / increase ventilation. Not 'insulation' - x

Any $2 \times(1)$ from:

reduce exposure time (\checkmark), protective clothing (\checkmark), barrier (\checkmark), breathing apparatus (\checkmark), handling equipment (1), monitoring equipment (\checkmark)

Question total
\end{tabular} \& 1

1
1

3
3

1
1
2

\hline
\end{tabular}

Physics 2 (Legacy) Higher Tier (Contd.)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marking details \\
- initially the weight is greater than the air resistance / the resultant force is downwards (1) [accept: the force of gravity / weight produces a downward acceleration] \\
- air resistance [or upward force] increases / resultant force decreases (1) \\
- [eventually] air resistance [or upward force] equals weight [or downward force] / zero resultant force (1) \\
Notes: Unless the terms air resistance [or drag or equiv] and weight [or gravitational force - accept gravity] are correctly used at least once, a maximum of 2 marks can be awarded. \\
correct initial curvature (1) levelling off [NB must not be higher than the parachute opening point - but allow some tolerance] (1) \\
Question total
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marks Available \\
3 \\
2 \\
[5]
\end{tabular}} \\
\hline 5. \& (a)

(b) \& \& \&

\hline 6. \& (a) \& (i)

(ii)

(iii)

(iv) \& | $\begin{aligned} & \text { Current }=\frac{2000(1)}{230}=8.70[\mathrm{~A}](1) \\ & \text { Notes: } \frac{2}{230} \rightarrow 0.0087 \rightarrow 1 \text { mark } \\ & \frac{2}{230} \rightarrow 8.7 \rightarrow 1 \text { mark } \\ & \frac{2 \mathrm{~kW}}{230 \mathrm{~V}} \rightarrow 8.7 \rightarrow 2 \text { marks } \\ & \frac{2}{230} \rightarrow 115 \rightarrow 0 \text { marks } \\ & 110=I \times 26.45(1 \text { sub }) \\ & \text { Current }=\frac{110}{26.45}(1 \text { manip })=4.16[\mathrm{~A}] \text { (1) } \end{aligned}$ |
| :--- |
| (Accept 4.2 but not 4.1 or 4) |
| Longer time to boil / converse |
| Would burn out [accept: break] / blow a fuse/overheat |
| Not - kettle / fuse will blow up |
| Any $3 \times(1)$ from: |
| Advantage: safer (\checkmark), because less likely to be killed by 110 than $230 \mathrm{~V} /$ smaller [current] shock (\checkmark) Disadvantage: thicker wires have to be used for the same power appliances (\checkmark) because the current taken is bigger (\checkmark) |
| Question total | \& 2

\hline
\end{tabular}

Physics 2 (Legacy) Higher Tier (Contd.)

PHYSICS 3 (LEGACY)

FOUNDATION TIER

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 1. \& \& (i)
(ii) \& \begin{tabular}{l}
Neutron (1) and electron (1) correctly labelled \\
Thompson: solid (1), positive charge spread throughout atom (1), negative charges dotted throughout atom (1) no protons (1), no neutrons (1), no electron shells / orbits (1), no nucleus (1) OR alternative statements about nuclear atom e.g. mass concentrated in centre (1), mainly made up of empty space (1) Assume reference to " it " is referring to the Thomson model. \\
Question total
\end{tabular} \& \begin{tabular}{l}
2 \\
3 \\
[5]
\end{tabular} \\
\hline 2. \& \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
20000 underlined (1) \\
reflection (1) \\
longitudinal (1) \\
Question total
\end{tabular} \& [3] \\
\hline 3. \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Gradient }=\frac{25}{50}(1), 0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right] \\
\& \text { Area }=25 \times 150(1),=3750[\mathrm{~m}]
\end{aligned}
\] \\
Time of 300 s from graph (1), Subs \(\frac{5625}{300}=18.75[\mathrm{~m} / \mathrm{s}](1)(\) accept \(18.75-19)\) \\
Correct description (momentum increases, becomes constant, and then decreases) (1) \\
Constant momentum value calculated: \(30000 \times 25=750000[\mathrm{~kg}\) \(\mathrm{m} / \mathrm{s}]\) (1), \\
One correct reference to 0 i.e. either momentum increases from 0 or momentum decreases to 0 . (1) \\
Question total
\end{tabular} \& 2
2
2
2

3
$[9]$

\hline
\end{tabular}

Physics 3 (Legacy) Foundation Tier (Contd.)

Question		Marking details	Marks Available
4.	(i) (ii)	In order downwards: C-D-B-A (3 all correct; 2 if $2 / 3$ correct; 1 if 1 correct) B \& C or ${ }_{2}^{4} \mathrm{He} \&{ }_{2}^{3} \mathrm{He}$ Question total	$\begin{aligned} & 3 \\ & 1 \end{aligned}$ [4]
5.	(i) (ii) (iii)	P waves travel faster than S OR they travel at different speeds P longitudinal S transverse (1) P travel through liquids / S don't (1) P waves travel faster than S (only award if not referred to in (i)) Signal will only have P waves, (1) since S waves can't pass through [liquid] core (1) Question total	1 2 2 [5]

Physics 3 (Legacy) Foundation Tier (Contd.)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& \multicolumn{3}{|c|}{Marking details} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Marks Available \\
2 \\
2 \\
1 \\
2 \\
2 \\
[9] \\
2 \\
3 \\
[5]
\end{tabular}} \\
\hline 6. \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(i)

(ii)

 \& \multicolumn{3}{|l|}{

Few radioactive particles produced / doesn't give off radiation (1) greater energy released than fission / 710 units of energy released compared to 223 units (1)

Award any 2 marks out of 3 :

To bring protons / nuclei / atoms close enough together, (1) nuclear forces overcome repulsion (1) high temperature needed (1) [Large] atom splits [into 2 smaller atoms]

To slow the neutrons down,(1) so they are absorbed by the uranium atoms / so fission can occur (1)

Control / boron rods, (1) absorb [some] neutrons (1)

Question total
\end{tabular}} \&

\hline 7. \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

 \&

Flicks to left [and returns to Flicks to left [and returns to

1 mark for each correct row

Question total

 \&

dle / zero] dle / zero]

Effect on voltage

increase decrease increase

 \&

\hline | Effect on |
| :--- |
| frequency |

\hline stays the same

\hline decrease

\hline stays the same

\hline
\end{tabular} \&

\hline
\end{tabular}

Physics 3 (Legacy) Foundation Tier (Contd.)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available

\hline 8. \& (a)

(b) \& \& \begin{tabular}{l}
In a transverse wave, the vibrations (1) are at right angles to the direction of motion (1).

In a longitudinal wave, the vibrations (1) are parallel to the direction of travel (1). (Maximum of 2 marks per statement)

Only award a mark for vibrations once and it must be used in the correct context. Award a maximum of 3 marks in total.

Correct angle of reflected ray (by eye) (1), wavefronts shown parallel and same wavelength drawn on reflected ray (by eye)(1)

Question total

 \&

3

2

[5]
\end{tabular}

\hline 9. \& | (a) |
| :--- |
| (b) | \& | (i) |
| :--- |
| (ii) |
| (i) |
| (ii) | \& | More turns on output coil / larger voltage on output coil Concentrates field [through coils] / makes the magnetic field stronger |
| :--- |
| B |
| D,(1) output voltage less than input / decreases the voltage (1) |
| Question total | \& | 1 1 |
| :--- |
| 1 2 |
| [5] |

\hline \& \& \& Total For Foundation Tier paper \& 50

\hline
\end{tabular}

HIGHER TIER

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& \multicolumn{3}{|c|}{Marking details} \& \[
\begin{gathered}
\text { Marks } \\
\text { Available }
\end{gathered}
\] \\
\hline 1. \& (a)
(b) \& (i)
(ii) \& \begin{tabular}{l}
Reference to a magnetic field moves or the magnetic field (1) this induces / produces / Flicks to left [and returns to Flicks to left [and returns to \\
1 mark for each correct row \\
Change to generator \\
More turns on the coil \\
Spinning the coil slower \\
Using stronger magnets \\
Question total
\end{tabular} \& \begin{tabular}{l}
ound the ma nges / is cut tes a curren dle / zero] dle / zero] (\\
Effect on voltage \\
increase decrease increase
\end{tabular} \& (1) when magnet he turns in the coil] (1) \& 3

[8]

\hline 2. \& (a)

(b) \& \& \begin{tabular}{l}
In a transverse wave, the vibr direction of motion (1).

In a longitudinal wave, the vibr of travel (1). (Maximum of 2 Only award a mark for vibrat correct context. Award a max

Correct angle of reflected ray and same wavelength drawn

Question total

 \&

ons (1) are

tions (1) are rks per stat s once and um of 3 mar

eye) (1), w reflected ray

 \&

t angles to the

allel to the direction t be used in the total.

onts shown parallel eye)(1)

 \&

2

[5]
\end{tabular}

\hline 3. \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(i)

(ii)

(iii)

 \& \multicolumn{3}{|l|}{

More turns on output coil / larger voltage on output coil Concentrates field [through coils] / makes the magnetic field stronger

B

D, (1) output voltage less than input / decreases the voltage (1) Correct form of equation (1), appropriate pair of voltages from graph e.g. 3 \& 12 (1) Subs (1), answer 200 (1)

Question total

} \&

1
1

1
2

4

[9]
\end{tabular}

\hline 4. \& (a)

(b) \& \[
$$
\begin{array}{r}
\text { (i) } \\
\text { (ii) }
\end{array}
$$

\] \& \multicolumn{3}{|l|}{| Subs into gradient - time 20 and speed $20(1)$, answer $=1\left[\mathrm{~m} / \mathrm{s}^{2}\right]$ (1) Attempting a calculation of area (1), 3900 [m] (1) Addition of areas-3900 (ecf) $+3500=7400$ (1), division by 400 (1), $18.5[\mathrm{~m} / \mathrm{s}]$ (1) |
| :--- |
| Question total |} \& | $\begin{aligned} & 2 \\ & 2 \\ & 3 \end{aligned}$ |
| :--- |
| [7] |

\hline
\end{tabular}

Physics 3 (Legacy) Higher Tier (Contd.)

Question		Marking details	Marks			
Available				$	$	(a)
:---						
(i)						
(b)						

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wiec.co.uk
website: www.wjec.co.uk

