

GENERAL CERTIFICATE OF SECONDARY EDUCATION GATEWAY SCIENCE ADDITIONAL SCIENCE B

B623/02

Unit 1 Modules B3 C3 P3 (Higher Tier)

Candidates answer on the question paper A calculator may be used for this paper

OCR Supplied Materials:

None

Other Materials Required:

- Pencil
- Ruler (cm/mm)

Wednesday 20 May 2009 Afternoon

Duration: 1 hour

Candidate Forename					Candidate Surname				
Centre Numb	ner					Candidate N	ımher		
Oentre Numi	Je1					Carididate N	arriber		

MODIFIED LANGUAGE

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided, however additional paper may be used if necessary.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.
- The total number of marks for this paper is **60**.
- This document consists of **24** pages. Any blank pages are indicated.

EQUATIONS

$$speed = \frac{distance}{time \ taken}$$

$$acceleration = \frac{change \ in \ speed}{time \ taken}$$

force =
$$mass \times acceleration$$

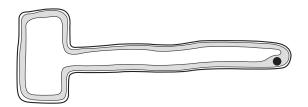
work done = force
$$\times$$
 distance

$$power = \frac{work\ done}{time}$$

$$kinetic\ energy = \frac{1}{2}\ mv^2$$

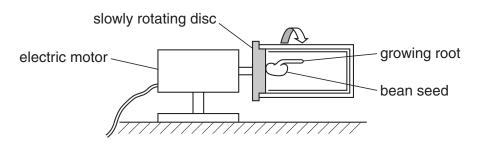
weight = mass × gravitational field strength

$$resistance = \frac{voltage}{current}$$


Answer **all** the questions.

Section A - Module B3

1 Sam is investigating roots.


She uses a microscope to look at a root hair cell.

The diagram shows one of the cells Sam sees.

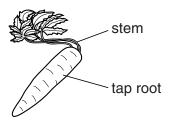
(a)	Write down the name of one part of this cell not found in animal cells.
	[1
(b)	Oxygen moves into the root hair cell by diffusion.
	What is meant by the term diffusion ?
	[1

(c) Sam places a growing bean seed on a rotating disc.

Finish the sentences about the growing root.

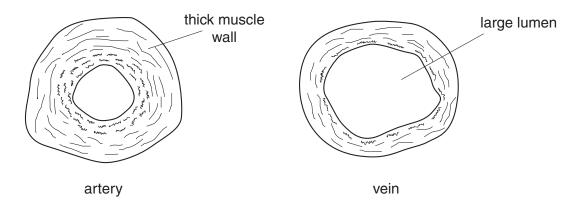
Roots normally grow downwards because they are positively

The root on this bean is growing outwards because Sam has removed the effect of


.....

[Total: 5]

					4			
2	This	s que	stion is abou	t fertilisation.				
	Spe	erm a	nd egg cells	carry out fertilisation	on.			
	The	y bo	th have a nuc	cleus to carry gene	3.			
							sperm cells (drawn to scale)	
			sperm cell not to scale)			egg cell		
	(a)	(i)	Write down	the name of the typ	oe of cell div	vision that	makes egg and sperm cells.	
								. [1]
		(ii)	This type of	cell division is diffe	erent to the	cell divisio	n that makes body cells.	
			Describe or	ne difference.				
								. [1]
	(b)	The	nucleus of th	ne egg and sperm l	ooth contair	n DNA.		
		Afte	er fertilisation	the DNA replicates	S.			
		Des	cribe the two	stages involved in	DNA replic	cation.		
		You	may draw a	labelled diagram to	help you.			


[Total: 4]

3 Carol grows carrots to enter in the biggest carrot competition.

(a)	She	uses selective breeding to help her to produce large carrots.
	(i)	Describe how Carol would carry out the selective breeding process.
		[2
	(ii)	Describe one reason why selective breeding may cause problems to a species.
		[1]
(b)	Car	rots contain a gene that controls beta-carotene production.
	The	beta-carotene gene can be removed from carrots and placed in rice plants.
		s process can be used to help people who eat a lot of rice and have a vitamin Aciency.
	Ехр	lain why.
		[Total: 4

4 Look at the diagram of an artery and vein.

(a)	Explain why the artery has a thick muscle wall.
(b)	Explain why the vein has a large lumen.
	[1]
	[Total: 2]

5 Bill investigates the effect of the enzyme catalase.

He uses the enzyme to break down hydrogen peroxide into oxygen and water.

He measures the rate of the reaction by timing how long it takes to collect $10\,\mathrm{cm}^3$ of oxygen.

He repeats the reaction at different pH values.

The table shows his results.

рН	time in minutes
2	no reaction
4	20
5	12
6	9
7	13
8	17

(a)	Describe the pattern in the results between pH 4 and pH 8.							
(b)	What is the optimum pH for catalase?							
	рН	[1]						
(c)	Explain the result for pH 2.							
	Use ideas about the lock and key theory in your answer.							
		[3]						

© OCR 2009 Turn over

[Total: 5]


Section B - Module C3

6	This que	estion is about the eleme	ents in the Periodic	Table.
	Look at	the list of elements.		
			argon	chromium
			hydrogen	iodine
			magnesium	neon
			nitrogen	oxygen
			potassium	sodium
	Answer	the questions.		
	Choose	your answers from the I	ist.	
	Each ele	ement can be used once	e, more than once	or not at all .
	The Peri	iodic Table on the back p	page may help you	
	(a) (i)	Write down the name of	of the element whic	h has only 6 electrons in its outer shell.
				[1]
	(ii)	Write down the name of	of the element whic	h has the electronic structure 2.8.8.1 .

______[1]

(b) Look at the diagram.

It shows a helium atom.

The table shows some information about the particles found in the nucleus of a helium atom.

Complete the table.

particle	relative mass	relative charge
neutron		
proton	1	+1

[2]

[Total: 4]

© OCR 2009 Turn over

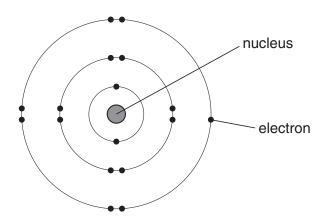
7 This question is about thermal decomposition.

Nick and Phil are heating some copper carbonate.

Look at the diagram. It shows the apparatus they use.

		[1]
	Write down one property of a compound of a transition element.	
(b)	Copper is a transition element.	
		[1]
	Write down the word equation for this reaction.	
	Copper oxide and carbon dioxide are made.	
(a)	Copper carbonate decomposes when it is heated.	

[Total: 2]


(a)	Sor	ne metals become superconductors at very low temperatures.	
	Sup	perconductors conduct electricity with no loss of power.	
	Exp	plain why.	
			[1]
(b)	The	e photograph shows a train built in Japan.	
	The	e train can travel at over 500 km per hour.	
	The	e train floats above a track.	
	This	s is made possible by the use of superconductors.	
	(i)	The Japanese train is held above the track by magnetism.	
		A superconductor uses a large current to make a powerful magnet.	
		Write down the name of this type of magnet.	
		answer	[1]
	(ii)	These powerful magnets are an advantage of superconductors.	
		Write down one other advantage and one disadvantage of using superconductors.	
			[2]
		[Tota	l: 4]

© OCR 2009 Turn over

9 This question is about the halogens.

They are in Group 7 of the Periodic Table.

Look at the diagram. It shows an **atom** of chlorine.

(a) The halogens have similar chemical properties.

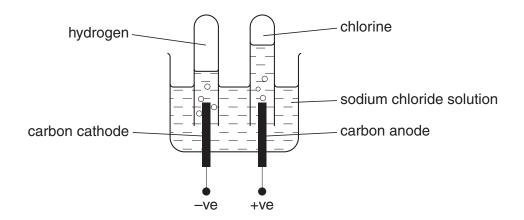
Explain why. Use ideas about electronic structure.

 . [1]

(b) The atoms in a **molecule** of chlorine, $\operatorname{C} l_2$, are held together by a covalent bond.

Draw the 'dot and cross' diagram for a molecule of chlorine.

You only need to include the electrons in the outer shell of chlorine.


	[Total: 4]
	[1]
	What is the difference between these two isotopes?
(c)	Chlorine-35, ${}_{17}^{35}$ C l , and chlorine-37, ${}_{17}^{37}$ C l , are isotopes of chlorine.

© OCR 2009 Turn over

10 Sophie investigates passing an electric current through sodium chloride solution.

Look at the list. It shows the particles in the sodium chloride solution.

The diagram shows the apparatus she uses.

		H+	H ₂ O	OH-	C1-	Na ⁺	
(a)	Sophie finds that the	he solutio	on conducts	s electricity.			
	Explain how a solu	ition of s	odium chlo	ride conduc	ts electricit	ty.	
							[1
(b)	Sodium atoms, Na	, lose ele	ectrons to n	nake sodiun	n ions, Na⁺	·.	
	How many electron	ns does e	each sodiur	m atom lose	?		
	answer						[1]
(c)	Hydrogen ions, H ⁺	, at the c	athode gai	n electrons	to make hy	drogen gas, H ₂ .	
	Write down the eq	uation fo	or the electr	rode reactio	n.		
	Use e ⁻ to show an	electron					

[Total: 4]

11 This question is about oxidation and reduction.

Look at these equations.

Equation **A** $Cl_2 + 2e^- \rightarrow 2Cl^-$ Equation **B** $Cu^{2+} + 2e^- \rightarrow Cu$ Equation **C** $Cu^{2+} + 2OH^- \rightarrow Cu(OH)_2$

Equation **D** $Al - 3e^- \rightarrow Al^{3+}$

(a) Which equation is an example of oxidation only?

Choose A, B, C or D.

answer[1]

(b) Which equation is **not** an example of an oxidation or reduction reaction?

Choose A, B, C or D.

answer[1]

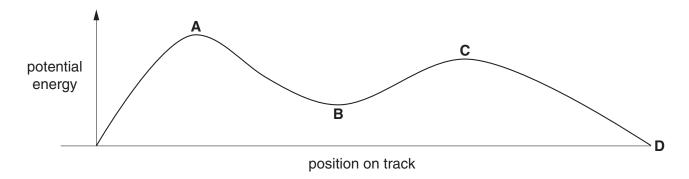
[Total: 2]

© OCR 2009 Turn over

Section C - Module P3

- 12 This question is about gravitational potential energy.
 - (a) Look at the information in the table.

planet	gravitational field strength in N/kg
Earth	10
Jupiter	25
Mercury	4
Neptune	11
Pluto	1
Venus	9


Oliver calculates the gravitational potential energy for a 1 kg mass at a height of 2 m above the surface of each planet.

Where will the 1 kg mass have the greatest gravitational potential energy?

Choose from	
Earth	
Jupiter	
Mercury	
Neptune	
Pluto	
Venus	
answer	[1]

(b) Look at the graph.

It shows how the potential energy of a roller coaster car changes as it moves along the track.

The car is pulled to the top of the roller coaster and starts with a speed of 0 m/s at point **A**. Complete the table to show how the energy of the car changes as it moves along the track.

position on track	potential energy	kinetic energy
${\tt A} \to {\tt B}$	decreases	
$\mathtt{B} o \mathtt{C}$		
C o D	decreases	increases

[2]

(c) Rosalind drops a ball from the edge of a cliff.

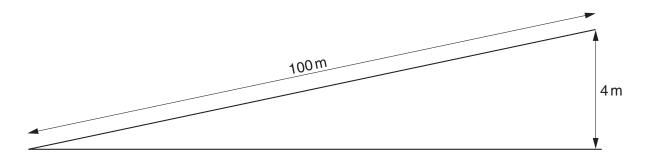
Look at the drawing.

The ball will reach its terminal speed.

(i)	Explain h	now the ball reaches its terminal speed.	
	In your a	nswer, use ideas about	
	•	forces	
	•	speed.	
			[2]
(ii)	At the te	rminal speed	[2]
(ii)	At the te		[2]
(ii)		rminal speed	[2]
(ii)	•	rminal speed the kinetic energy of the ball is at its maximum	[2]
(ii)	•	rminal speed the kinetic energy of the ball is at its maximum the potential energy of the ball is decreasing.	[2]

[Total: 6]

13 (a) There are large forces in a high speed crash.

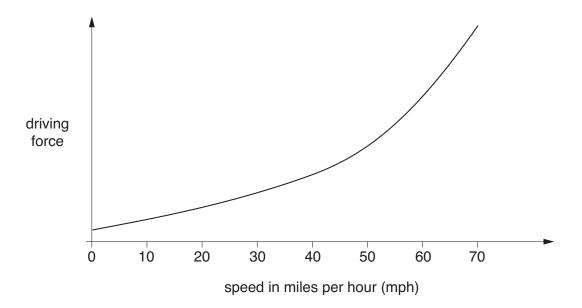

Air bags change shape in a crash and absorb energy.

	This reduces the forces on the driver.	
	Explain how air bags reduce the forces in a collision.	
	In your answer, use ideas about	
	speedaccelerationtime.	
		[2]
(b)	Some safety devices make driving safer.	
	They do not reduce injury in a crash.	
	Adjustable seating is one of these safety devices.	
	Explain how this makes driving safer.	
		[1]
(c)	Drivers who have been drinking alcohol are more likely to have accidents.	
	This is because their reaction time and thinking distance have increased.	
	Write down one other factor that can increase thinking distance.	
		[1]
(d)	Braking distance increases in certain conditions.	
	Write down one factor that can increase braking distance.	
		[1]

Turn over

[Total: 5]

- 14 Penny drives her car up a hill.
 - (a) Look at the diagram.


Her car climbs 4m for every 100m that it moves along the road.

The car weighs 7000 N.

(i)	Show that the work done is 28 000 J.	
	The equations on page 2 may help you.	
		[1]
(ii)	It takes 8 seconds to do 28000J of work.	
	Calculate the power the engine needs to climb the hill.	
	The equations on page 2 may help you.	
	answer W	[2

(b) (ii) Look at the diabi	Look at the grap	рh
----------------------------	------------------	----

It shows how the driving force produced by Penny's car engine increases with speed.

The fuel consumption at 70 mph is **much** larger than Penny expected.

 . [1]

(ii) Apart from speed, write down one **other** factor that affects fuel consumption in Penny's car.

[1]

(c) Penny is concerned about polluting the environment.

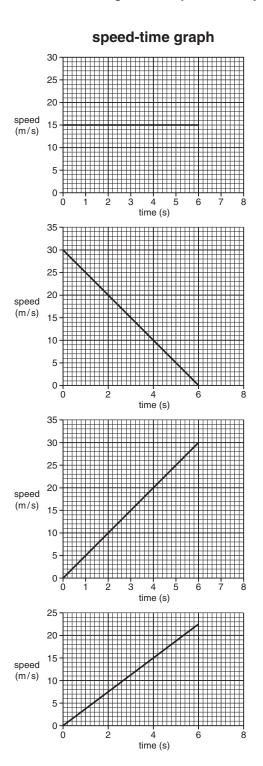
Use the graph to explain why.

She is thinking of buying an electrically powered car.

The salesman says that it does **not** cause pollution.

Is he really correct?

Explain your answer.


.....[2]

[Total: 7] Turn over **15** This question is about motion.

The diagram shows speed-time graphs in the first column.

There is a list of statements in the second column.

Draw a straight line to join each **speed-time graph** with its correct **statement**.

statement

accelerates at 5 m/s²

is travelling at a steady speed

travels 50 m in the first 2 seconds

travels 30 m in the first 4 seconds

[2]

[Total: 2]

PLEASE DO NOT WRITE ON THIS PAGE

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

 $For queries \ or further information \ please \ contact \ the \ Copyright \ Team, \ First \ Floor, 9 \ Hills \ Road, \ Cambridge \ CB2 \ 1PB.$

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2009

The Periodic Table of the Elements

1 2 2 2 3 4 4 4 4 4 4 4 4 4								
1	0	4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	t fully
1	7		19 F fluorine 9	35.5 Cl chlorine 17	80 Br bromine 35	127 iodine 53	[210] At astatine 85	orted but no
1	9		16 O oxygen 8	32 S sulfur 16	79 Se selenium	128 Te tellurium 52	[209] Po polonium 84	ve been repo
1	2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112-116 ha iuthenticate
1	4		12 C carbon 6	28 Si siticon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82	mic numbers a
1	3		11 B boron 5	27 Al aluminium 13	70 Ga gallium 31	115 In indium 49	204 T1 thallium 81	nts with ato
1		·			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Eleme
1					63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium
1					59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78	[271] Ds darmstadtium 110
Partition					59 Co cobalt 27		192 	[268] Mt meitnerium 109
Pervitium		1 H hydrogen 1			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
Secondarium Parcelative atomic secondarium Parcelatium Parcelati					55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
Secondarium Parcelative atomic secondarium Parcelatium Parcelati			. mass ɔol number		52 Cr chromium 24	96 Mo motybdenum 42	184 W tungsten 74	Sg seaborgium 106
9 Be beryltium 4 4 24 45 Ca Calcium 20 21 21 39 Sr Y Strontium 38 89 Sr Contium 38 89 Sr Sr Act Ra Ba La* barium 56 57 Ra Act radium actinium 88 89 Sr Sr Sr Act Sr		Key	ve atomic <mark>omic syml</mark> _{name} (proton)		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
2 Be beryllium 4 4 40 24 Anglesium 12 Ca calcium 20 Sr strontium 38 Sr strontium 38 Sr Sr strontium 56 Ba barium 56 Ra radium 88 88 88			relati at o atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
					45 Sc scandium 21	89 Y yttrium 39	139 La* lanthanum 57	[227] Ac* actinium 89
	2		9 Be berytlium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
	_		7 Li Lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.