

B624/01

GENERAL CERTIFICATE OF SECONDARY EDUCATION

GATEWAY SCIENCE

ADDITIONAL SCIENCE B

Unit 2 Modules B4 C4 P4 (Foundation Tier)

WEDNESDAY 23 JANUARY 2008

Afternoon Time: 1 hour

Candidates answer on the question paper.

Additional materials (enclosed):

None

Calculators may be used.

Additional materials: Pencil

Ruler (cm/mm)

Candidate Forename				Candidate Surname				
Centre Number				Candidate Number				

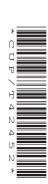
INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Do **not** write outside the box bordering each page.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE				
Section	Max.	Mark		
A	20			
В	20			
С	20			
TOTAL	60			


	This document	consists of 2	2 printed	pages and	d 2 blank	pages
--	---------------	---------------	-----------	-----------	-----------	-------

SP (SHW 00001 2/07) T42452/5

© OCR 2008 [R/103/4261]

OCR is an exempt Charity

[Turn over

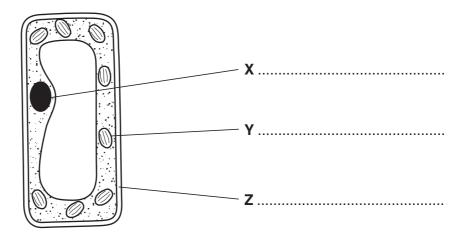
EQUATIONS

$$speed = \frac{distance}{time \ taken}$$

$$acceleration = \frac{change \ in \ speed}{time \ taken}$$

force =
$$mass \times acceleration$$

work done = force
$$\times$$
 distance


$$power = \frac{work\ done}{time}$$

$$resistance = \frac{voltage}{current}$$

Answer all the questions.

Section A - Module B4

1 The diagram shows a plant cell.

What are the names of parts X, Y and Z?

Write your answers on the diagram.

Choose your answers from the list below.

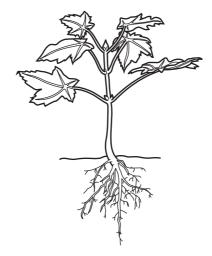
cell membrane

cell wall

chloroplast

cytoplasm

nucleus


vacuole

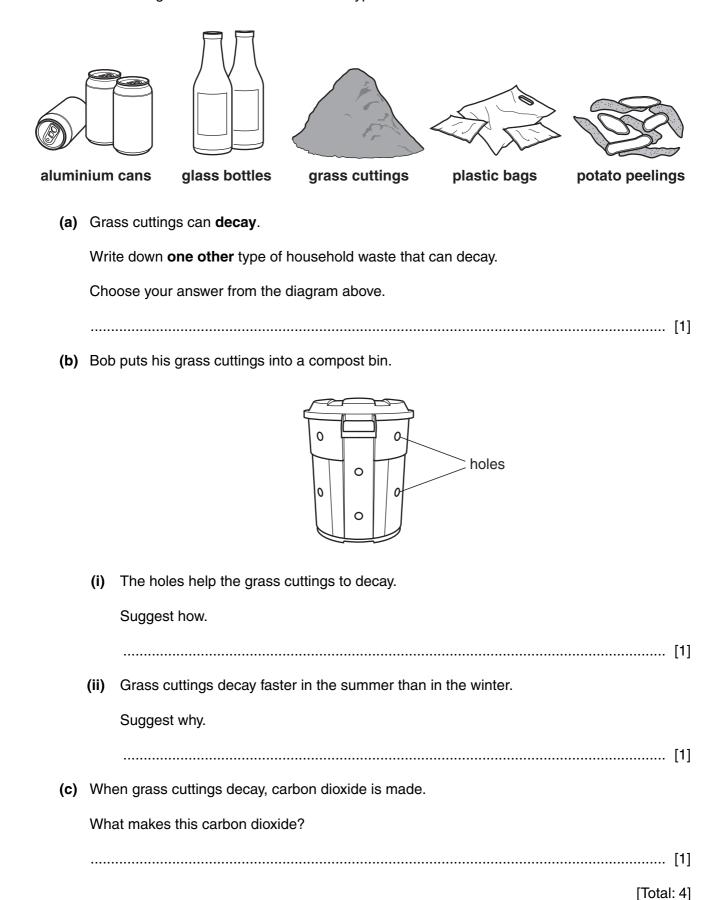
[3]

[Total: 3]

Dal	e grows tomatoes.	
Gre	enflies sometimes damage his tomato plants.	
(a)	One way to control the greenflies is to use chemicals.	
	What type of chemical should Dale use to control greenflies?	
	Put a ring around the chemical that he should use.	
	fungicide herbicide insecticide	[1]
(b)		
		[1]
(c)	Dale does not grow his tomatoes in soil.	
	Instead he uses water to supply them with minerals.	
	What is this called?	
		[1]
(d)	Which part of Dale's tomato plants takes in the minerals?	
		[1]
	[Total:	4]

3 The diagram shows a plant.

(a) Write about how water moves through a plant.


In your answer include

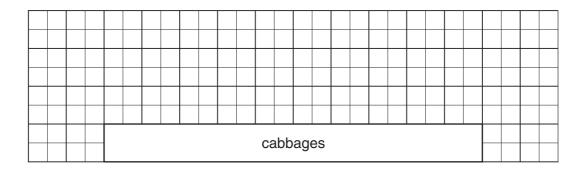
- where water enters a plant
- where water leaves a plant

	the processes involved.
	[3]
(b)	In which part of a plant does most photosynthesis occur?

[Total: 4]

4 Look at the diagram. It shows some different types of household waste.

5 Look at the information about a farmland food chain.


	number of individuals	mass of an individual in g	total biomass in g
cabbages	8	250	
caterpillars	400	2	800
thrushes	5	80	400
hawks		200	200

1	(a)	١ ١	í۱	Com	nlete	the	tahle
١	la.	, ,	w		piele	เมเษ	lable.

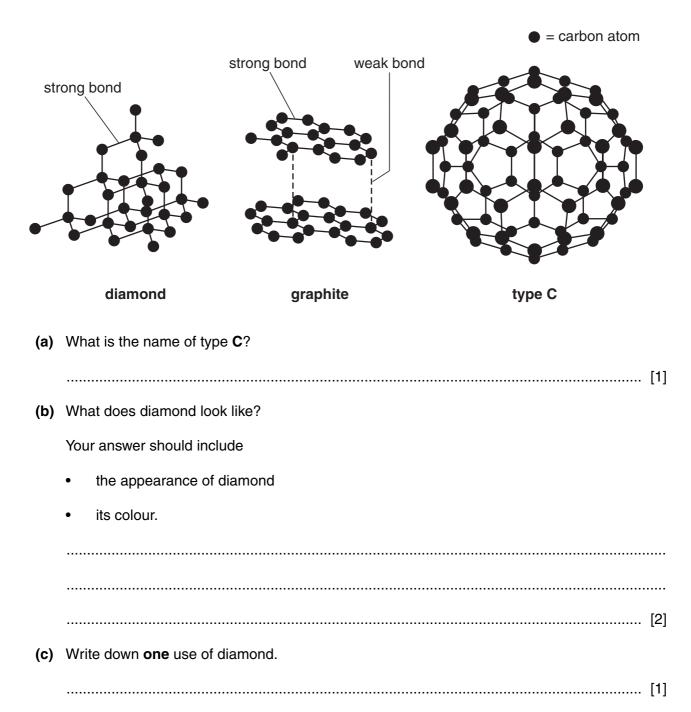
[2]

- (ii) Use the data in the table to complete the pyramid of biomass.
 - Use 1 cm square = 200 g.
 - Label the pyramid.

The bar for cabbages has been done for you.

[2]

(b) Some plant biomass can be used for fuel.


Write down **one** example of a fuel from plant biomass.

______[1]

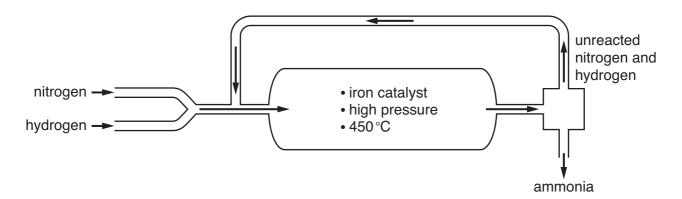
[Total: 5]

Section B - Module C4

6 Look at the diagrams. They show the different forms of carbon.

[Total: 4]

7 This question is about detergents.


Look at the label from a packet of washing powder.

Active ingredients

detergent water softener bleach optical brighteners enzymes

(a)	One ingredient is the main cleaning agent.	
	Which one?	
	Choose from the list of ingredients.	
		[1]
(b)	One ingredient gives the 'whiter than white' appearance to the clothes.	
	Which one?	
	Choose from the list of ingredients.	
		[1]
(c)	Some washing powders are designed to work at low temperatures.	
	Write down an advantage of washing clothes at lower temperatures.	
		[1]
	[Total	: 3]

8 Ammonia is made from nitrogen and hydrogen in the Haber process.

The equation for the reaction is

nitrogen + hydrogen ← ammonia

(a) Hydrogen is needed for the process.

Where does the hydrogen come from?

Choose from the list.

air

carbon dioxide

natural gas

	answer	[1]
(b)	What does the symbol	
		[1]
(c)	Some of the nitrogen and hydrogen does not react.	
	What happens to the unreacted nitrogen and hydrogen?	
		[1]
(d)	There are lots of costs in making ammonia. One is the cost of the equipment used.	
	Write about other costs in making ammonia.	
		[0]

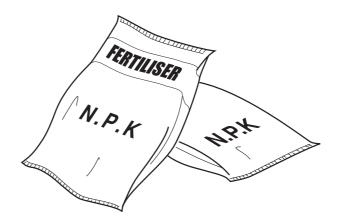
(e) Factories which make ammonia run for 24 hours a day for 7 days a week.

What is the name given to this type of process?

Choose from the list.

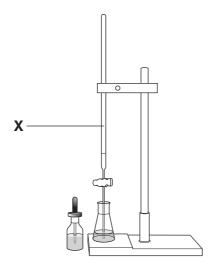
batch

continuous


purification

neutralisation

[1]


[Total: 6]

This question is about fertilisers.

(a)	Many fertilisers contain three essential elements.	
	Complete these statements. One has been done for you.	
	You should use the Periodic Table on the back page to help you.	
	N is nitrogen.	
	P is	
	K is	[2]
(b)	Why do farmers use fertilisers?	

(c) Fertilisers can be made by adding an alkali to an acid.

Look at the apparatus that is used.

Write down the name of the piece of apparatus labelled ${\bf X}$.

Choose from the list.

burette

filter funnel

measuring cylinder

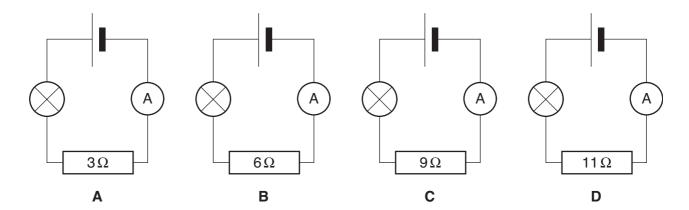
pipette

	answer	. [1]
(d)	Ammonium nitrate is a fertiliser. The formula for ammonium nitrate is $\mathrm{NH_4NO_3}$.	
	Calculate the relative formula mass (M _r) of ammonium nitrate.	
	The relative atomic mass (A _r) for N is 14, for H is 1 and for O is 16.	
	answer	[1]

(e)	Ryan makes some ammonium nitrate.	
	He predicts that he will make 25 g. His actual yield is 20 g.	
	Calculate his percentage yield.	
	percentage yield = %	[2]

[Total: 7]

Section C - Module P4


10	(a)	Yvo	nne rubs a plastic rod with a duster.	
		It be	ecomes charged.	
		She	e puts it near some small pieces of paper.	
		Loo	k at the diagram.	
			charged rod pieces of paper	
		(i)	What will happen to the small pieces of paper?	[1]
		(ii)	There are two sorts of charge.	ניו
			Write down the names of the two sorts of charge.	
			and	[1]
	((iii)	We can get an electric shock from electrostatic charges.	
			Describe how.	
				[2]
	(b)	Stat	tic electricity can be useful.	
		Writ	te down one use of static electricity.	
				[1]

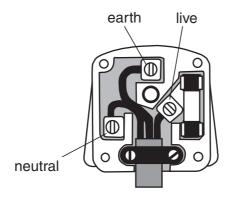
© OCR 2008 [Turn over

[Total: 5]

11 (a) This question is about electric circuits.

Look at the electric circuits.

The lamp and battery are the same in all the circuits.

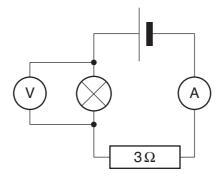

(i) Which circuit has the smallest current?

(ii) Which circuit has the largest current?

Choose from: A B C D

answer[1]

(b) Look at the diagram of a mains plug.


The columns below list the three terminals of a plug and the colours of the wires.

(i) Draw a straight line from **each** terminal to its correct wire colour.

	terminal		colour			
	earth		blue			
	live		brown			
	neutral		green/yellow			
				[2]		
(ii)	(ii) Some appliances are double insulated.					
	They only have t	wo wires connected to the plug.				
	Which wire is no	t needed for a double insulated applianc	e?			
				[1]		

(c) Yvonne puts a voltmeter across a lamp.

Look at the diagram.

The reading on the voltmeter is 5V.

The reading on the ammeter is 2A.

Calculate the resistance of the lamp.

Use the equations on page 2 to help you.	

answerohms

[Total: 7]

[2]

12	The	re are three types of nuclear radiation.
	Alpł	na and gamma are two of the types.
	(a)	Write down the name of the third type of nuclear radiation.
		[1]
	(b)	Gamma radiation is an electromagnetic wave.
		Another type of electromagnetic wave has a similar wavelength.
		It is used in medicine.
		What is it called?
		[1]
	(c)	Write down one other use of gamma radiation.
		[1]
		[Total: 3]

13	(a)) Nuclear radiation is always present in the environment.					
		(i)	What do we call this nuclear radiation?				
				[1]			
		(ii)	Some of this radiation comes from atoms in rocks.				
			Which part of the atom gives out the radiation?				
				[1]			
	(b)	Elec	ctricity is generated in a nuclear power station.				
(i) Write down the name of the fuel used in a nuclear power station.							
				[1]			
		(ii)	There are three main stages in the production of electricity in a power station.				
			Complete the diagram.				
			electricity produced				
				[0]			
				[2]			

END OF QUESTION PAPER

[Total: 5]

21 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

22 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

0	4 He hetium 2	20 Ne neon 10	40 Ar argon 18	84 Kr Krypton 36	131 Xe xenon 54	[222] Rn radon 86	t fully
_		19 F fluorine 9	35.5 Cl chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but no
9		16 0 0xygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po potentium 84	ve been repo J
2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112-116 hav authenticated
4		12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82	mic number: a
m		11 B boron 5	27 Al aluminium 13	70 Ga gallium 31	115 In indium 49	204 T1 thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
				65 Zn zinc 30	712 Cd cadmium 48	201 Hg mercury 80	Eleme
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium
				59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78	[271] Ds darmstadtium 110
				59 Co cobalt 27	103 Rh rhodium 45	192 Ir tridium 77	[268] Mt meitnerium 109
	1 H hydrogen 1			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
				55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
		mass ɔol number		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
	Key	relative atomic mass atomic symbol ^{name} atomic (proton) number		51 V vanadium 23	93 N niobium 41	181 Ta tantalum 73	[262]
		relati at o atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
				45 Sc scandium 21	89 Y yttrium 39	139 La* lanthanum 57	[227] Ac* actinium 89
7		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
_		7 Li ^{lithium} 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.