RECOGNISING ACHIEVEMENT

GENERAL CERTIFICATE OF SECONDARY EDUCATION

TWENTY FIRST CENTURY SCIENCE

ADDITIONAL SCIENCE A

Unit 3 Modules B6 C6 P6 (Foundation Tier)
SAMPLE ASSESSMENT MATERIAL
(from 2010 onwards)
Candidates answer on the question paper
Additional materials (enclosed):
None
Calculators may be used. Additional materials:

Pencil
Ruler (cm/mm)

Candidate
Forename

Candidate Surname
Candidate
Number

Centre Number

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Do not write outside the box bordering each page.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S		
USE		
Qu.	Max.	Mark
1	6	
2	4	
3	4	
4	4	
5	7	
6	3	
7	4	
8	2	
9	8	
TOTAL	42	

This document consists of $\mathbf{1 7}$ printed pages and $\mathbf{3}$ blank pages.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

speed $=\frac{\text { distance travelled }}{\text { time taken }}$
momentum $=$ mass \times velocity
change of momentum $=$ resultant force x time for which it acts
work done by a force $=$ force \times distance moved by the force
change in energy $=$ work done
change in GPE $=$ weight x vertical height difference
kinetic energy $=1 / 2 \times$ mass $\times\left[\right.$ velocity] ${ }^{2}$

Electric Circuits

resistance $=\frac{\text { voltage }}{\text { current }}$
Voltage across primary coil $=\quad$ Number of turns in primary coil
Voltage across secondary coil $=$ Number of turns in secondary coil
energy transferred = power x time
power $=$ potential difference \times current
efficiency $=\frac{\text { energy usefully transferred }}{\text { total energy supplied }} \times 100 \%$

The Wave Model of Radiation

wave speed $=$ frequency \times wavelength

BLANK PAGE

Question 1 starts on page 4 PLEASE DO NOT WRITE ON THIS PAGE

Answer all the questions.
1 Isobel uses a remote control to adjust her TV set.

(a) The remote control uses a beam of infrared to carry information to the TV set. Infrared is part of the electromagnetic spectrum.
(i) Here is a partly completed table of the electromagnetic spectrum.

Write infrared in the correct space in the table.
(ii) Here are some statements about electromagnetic waves.

A They have the same speed through space.
B They are strongly absorbed by water.
C They travel along long optical fibres.
Which statement, \mathbf{A}, \mathbf{B} or \mathbf{C}, is true for all waves in the electromagnetic spectrum? answer
(b) The source of the infrared from the remote control is in a plastic lens.

As the infrared leaves the plastic it changes direction.
Here are some possible reasons for this.
A The infrared refracts as it speeds up when it leaves the plastic.
B The infrared diffracts as it leaves the plastic.
C The infrared reflects from the surface of the plastic.
Which is the correct reason, \mathbf{A}, \mathbf{B} or \mathbf{C} ?
answer
(c) Information is coded into the infrared beam by switching it on and off in short pulses. This codes the information as a digital signal.

Explain why the information is coded this way.
\qquad
\qquad
\qquad
\qquad
\qquad

2 Jo uses a microwave oven to heat her dinner.

(a) These sentences are about the microwave oven.

Draw a straight line from the start of each sentence to its correct end.
start
The microwaves interfere ...

The microwaves are reflected ...

The microwaves are diffracted ...

The microwaves are absorbed ...
... by the metal walls of the oven.
end
\square
... by the water in the food.
... when they pass through a gap.
\square
... where they overlap with each other.
(b) This graph shows a microwave.

Which distance, A, B, C or \mathbf{D}, is the wavelength of the microwave?
answer

3 Jenny is a presenter for Radio CA.

(a) She speaks into the microphone.

What does the sound wave carry from her mouth to the microphone?
Put a/ring around the correct answer. electricity energy magnetism
[1]
(b) Jenny sings a note into the microphone.

The sound wave has a frequency of 680 Hz and a wavelength of 0.5 m .
(i) Which of the following shows how to calculate the speed of the sound wave? Put a ring around the correct answer.
680
680×0.5
0.5
0.5 680
(ii) Jenny changes the frequency of her note from 680 Hz to 340 Hz . What effect does this have on the speed and wavelength of her sound?
\qquad
\qquad
\qquad

BLANK PAGE

Question 4 starts on page 10
 PLEASE DO NOT WRITE ON THIS PAGE

4 Jane has some copper.
She uses this to make copper sulfate.
(a) Jane uses one reaction from the first list and one from the second list.

Draw one straight line from the correct first reaction to the correct second reaction.
first

```
copper + oxygen }->\mathrm{ copper oxide
```

```
copper + oxygen }->\mathrm{ copper sulfide
```

copper + sulfur \rightarrow copper oxide
second
carbon dioxide + sulfuric acid \rightarrow copper sulfate
copper oxide + sulfuric acid \rightarrow copper sulfate
copper oxide + sodium hydroxide \rightarrow copper sulfate
(b) The copper sulfate Jane makes is not pure.

She uses these four steps to purify the copper sulfate.
They are in the wrong order.
A drying
B filtration
C dissolving
D crystallisation
Fill in the boxes to show the right order. The first one has been done for you.

[Total: 4]

5 Bobby reacts magnesium with an acid to make hydrogen and magnesium sulfate.
(a) Put a ring) around the formula of magnesium sulfate.

MgCl 2	MgO	MgS	MgSO 4

(b) Bobby measures the total volume of hydrogen gas given off as the reaction takes place.

What does the graph show?
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Bobby puts a lighted splint into some hydrogen gas.

There is a loud 'pop'.
Here is the equation for the reaction.

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Here are some statements about this reaction.

Write \mathbf{T} in the box next to each true statement and \mathbf{F} in the box next to each false one.

Some water is made.

The water reacts with hydrogen.

The hydrogen reacts with oxygen. \square
The oxygen reacts with hydrogen. \square
One molecule of hydrogen reacts with one molecule of oxygen. \square
One molecule of hydrogen reacts with two molecules of oxygen. \square

Two molecules of hydrogen react with one molecule of oxygen. \square
[3]

6 Mary carries out a titration.
Here is a list of instructions that she uses. Some are in the wrong order.
A Fill the burette with acid.
B Take the first burette reading.
C Put $25 \mathrm{~cm}^{3}$ of alkali solution into a conical flask.
D Add indicator to the alkali.
E Take the second burette reading.
F Add acid drop by drop when the colour starts to change.
G Run acid from the burette into the flask, swirling at the same time.
H Stop adding the acid when the colour change is permanent.

Fill in the boxes to show the right order. The first four have been done for you.

7 Charlie carries out an experiment using woodlice.
He puts 20 woodlice into the centre of a petri dish so that they can move freely into four chambers, A, B, C and D. Each chamber has different conditions.

(a) The woodlice tend to gather in dark areas and also in moist areas.

The behaviour pattern of the woodlice is caused by simple reflex actions.
Why are simple reflex actions important for animals?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

8 This question is about the cerebral cortex of the brain.

Complete the sentences using the best words from this list.
memory balance intelligence body temperature
The cerebral cortex is the part of the human brain most concerned with \qquad and \qquad .

9 This question is about the human nervous system.
(a) The diagram shows a motor neuron.

Write the correct letter, A, B, C or D, in the box next to each label description.

label description	letter
axon	
cell nucleus	
fatty sheath	

(b) What are the functions of the fatty sheath?

Put a tick (\checkmark) in the box next to each of the two correct answers.
to insulate the axon
to insulate the cell nucleus

\square
to allow the nerve impulse to travel faster \square
to improve the connection with other neurons

(c) The diagram shows a reflex arc.

The reflex arc involves different parts of the nervous system.
Each part has a different task.
Draw a straight line from each part to its correct task.

task
brings about a change in the body
carries the impulse away from the receptor
carries the impulse towards the effector
detects a specific stimulus

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

12		Key										3	4	5	6	7	$\begin{gathered} 0 \\ \hline \begin{array}{c} 4 \\ \text { He } \\ \text { nelium } \\ 2 \end{array} \end{gathered}$				
			$\begin{gathered} 1 \\ \begin{array}{c} \text { hydrogen } \\ 1 \end{array} \end{gathered}$																		
$\begin{gathered} 7 \\ \mathbf{L i} \\ \text { lithium } \\ 3 \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{Be} \\ \text { beryllium } \\ 4 \end{gathered}$						relat at atomic	atomic mic sym name proton)	mass ol umber							$\begin{gathered} 11 \\ \mathbf{B} \\ \text { boron } \\ 5 \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{C} \\ \text { carbon } \\ 6 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{N} \\ \text { nitrogen } \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ 0 \\ \text { oxygen } \\ 8 \end{gathered}$	$\begin{gathered} 19 \\ \mathbf{F} \\ \text { fluorine } \\ 9 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ne} \\ \text { neon } \\ 10 \end{gathered}$
$\begin{gathered} 23 \\ \mathrm{Na} \\ \text { sodium } \\ 11 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{M g} \\ \text { magnesium } \\ 12 \end{gathered}$											$\begin{gathered} 27 \\ \mathbf{A l} \\ \text { aluminium } \\ 13 \end{gathered}$	$\begin{gathered} 28 \\ \mathrm{Si} \\ \text { silicon } \\ 14 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{P} \\ \text { phosphorus } \\ 15 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{S} \\ \text { sulfur } \\ 16 \end{gathered}$	$\begin{gathered} 35.5 \\ \text { Cl } \\ \text { chlorine } \\ 17 \end{gathered}$	$\begin{gathered} 40 \\ \text { argon } \\ \text { argon } \end{gathered}$				
$\begin{gathered} 39 \\ \mathbf{K} \\ \text { potassium } \\ 19 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{C a} \\ \text { calcium } \\ 20 \end{gathered}$	$\begin{gathered} 45 \\ \text { Sc } \\ \text { scandium } \\ 21 \end{gathered}$	$\begin{gathered} 48 \\ \mathrm{Ti} \\ \text { titanium } \\ 22 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{V} \\ \text { vanadium } \\ 23 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Cr} \\ \text { chromium } \\ 24 \end{gathered}$	55 $\mathbf{M n}$ manganese 25	$\begin{aligned} & 56 \\ & \text { Fe } \\ & \text { iron } \\ & 26 \end{aligned}$	$\begin{gathered} 59 \\ \text { Co } \\ \text { cobalt } \\ 27 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Ni} \\ \text { nickel } \\ 28 \end{gathered}$	$\begin{gathered} 63.5 \\ \text { Cu } \\ \text { copper } \\ 29 \end{gathered}$	$\begin{aligned} & 65 \\ & \text { Zn } \\ & \text { zinc } \\ & 30 \end{aligned}$	$\begin{gathered} 70 \\ \text { Ga } \\ \text { gallium } \\ 31 \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{G e} \\ \text { germanium } \\ 32 \end{gathered}$	75 As arsenic 33	$\begin{gathered} 79 \\ \text { Se } \\ \text { selenium } \\ 34 \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Br} \\ \text { bromine } \\ 35 \end{gathered}$	$\begin{gathered} 84 \\ \mathbf{K r} \\ \text { krypton } \\ 36 \end{gathered}$				
$\begin{gathered} 85 \\ \mathbf{R b} \\ \text { rubidium } \\ 37 \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Sr} \\ \text { strontium } \\ 38 \end{gathered}$	$\begin{gathered} 89 \\ \mathbf{Y} \\ \text { y trium } \\ 39 \end{gathered}$	$\begin{gathered} 91 \\ \text { Zr } \\ \text { zirconium } \\ 40 \end{gathered}$	$\begin{gathered} 93 \\ \mathrm{Nb} \\ \text { niobium } \\ 41 \end{gathered}$	96 $\mathbf{M o}$ molybdenum 42	[98] Tc technetium 43	$\begin{gathered} 101 \\ \mathrm{Ru} \\ \text { ruthenium } \\ 44 \end{gathered}$	$\begin{gathered} 103 \\ \text { Rh } \\ \text { rhodium } \\ 45 \end{gathered}$	$\begin{gathered} 106 \\ \text { Pd } \\ \text { palladium } \\ 46 \end{gathered}$	$\begin{gathered} 108 \\ \text { Ag } \\ \text { silver } \\ 47 \end{gathered}$	$\begin{gathered} 112 \\ \text { Cd } \\ \text { cadmium } \\ 48 \end{gathered}$	$\begin{gathered} 115 \\ \text { In } \\ \text { indium } \\ 49 \end{gathered}$	$\begin{aligned} & 119 \\ & \text { Sn } \\ & \text { tin } \\ & 50 \end{aligned}$	$\begin{gathered} 122 \\ \text { Sb } \\ \text { antimony } \\ 51 \end{gathered}$	$\begin{gathered} 128 \\ \mathrm{Te} \\ \text { tellurium } \\ 52 \end{gathered}$	$\begin{gathered} 127 \\ \text { I } \\ \text { iodine } \\ 53 \end{gathered}$	$\begin{gathered} 131 \\ \text { Xe } \\ \text { xenon } \\ 54 \end{gathered}$				
$\begin{gathered} 133 \\ \text { Cs } \\ \text { caesium } \\ 55 \end{gathered}$	$\begin{gathered} 137 \\ \text { Ba } \\ \text { barium } \\ 56 \end{gathered}$	$\begin{gathered} 139 \\ \text { La* } \\ \text { lanthanum } \\ 57 \end{gathered}$	$\begin{gathered} 178 \\ \mathbf{H f} \\ \text { Hafnium } \\ 72 \end{gathered}$	$\begin{gathered} 181 \\ \text { Ta } \\ \text { tantalum } \\ 73 \end{gathered}$	$\begin{gathered} 184 \\ \mathbf{W} \\ \text { Wungsten } \\ 74 \end{gathered}$	$\begin{gathered} 186 \\ \text { Re } \\ \text { rhenium } \\ 75 \end{gathered}$	$\begin{gathered} 190 \\ \text { Os } \\ \text { osmium } \\ 76 \end{gathered}$	$\begin{gathered} 192 \\ \text { Ir } \\ \text { iridium } \\ 77 \end{gathered}$	$\begin{gathered} 195 \\ \text { Pt } \\ \text { platinum } \\ 78 \end{gathered}$	$\begin{gathered} 197 \\ \mathrm{Au} \\ \text { gold } \\ 79 \end{gathered}$	$\begin{gathered} 201 \\ \mathbf{H g} \\ \text { mercury } \\ 80 \end{gathered}$	$\begin{gathered} 204 \\ \text { Tl } \\ \text { thallium } \\ 81 \end{gathered}$	$\begin{gathered} 207 \\ \text { Pb } \\ \text { lead } \\ 82 \end{gathered}$	$\begin{gathered} 209 \\ \text { Bi } \\ \text { bismuth } \\ 83 \end{gathered}$	$\begin{gathered} {[209]} \\ \text { Po } \\ \text { polonium } \\ 84 \end{gathered}$	$\begin{gathered} {[210]} \\ \text { At } \\ \text { Atatine } \\ 85 \end{gathered}$	$\begin{gathered} {[222]} \\ \text { Rn } \\ \text { radon } \\ 86 \end{gathered}$				
$\begin{gathered} {[223]} \\ \mathrm{Fr} \\ \text { francium } \\ 87 \end{gathered}$	$\begin{gathered} {[226]} \\ \mathbf{R a} \\ \text { radium } \\ 88 \end{gathered}$	$\begin{gathered} {[227]} \\ \mathbf{A c c}^{\mathbf{A c t i n i u m ~}} \\ 89 \end{gathered}$	$\begin{gathered} {[261]} \\ \mathbf{R f} \\ \text { rutheroforium } \\ 104 \end{gathered}$	$\begin{gathered} {[262]} \\ \text { Db } \\ \text { dubnium } \\ 105 \end{gathered}$	$[266]$ $\mathbf{S g}$ seaborgium 106	$\begin{gathered} {[264]} \\ \text { Bh } \\ \text { bohrium } \\ 107 \end{gathered}$	$\begin{gathered} {[277]} \\ \text { Hs } \\ \text { hassium } \\ 108 \end{gathered}$	$\begin{gathered} {[268]} \\ \mathrm{Mt} \\ \text { meitrerium } \\ 109 \end{gathered}$	$\begin{gathered} {[271]} \\ \text { Ds } \\ \text { darmstadium } \\ 110 \end{gathered}$	$\begin{gathered} \hline[272] \\ \mathbf{R g} \\ \text { roentgeniu } \\ 111 \end{gathered}$	Elements with atomic numbers 112-116 have been reported but not fully authenticated										

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number

CONFIDENTIAL

GCSE Unit
MARK SCHEME

SAMPLE ASSESSMENT MATERIAL
(from 2010 onwards)
Additional Science A (J631)
Modules B6, C6 and P6
Foundation Tier

A217/01

Maximum Mark: 42

Guidance for Examiners

Additional Guidance within any mark scheme takes precedence over the following guidance.

1. Mark strictly to the mark scheme.
2. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.
3. Accept any clear, unambiguous response which is correct, e.g. mis-spellings if phonetically correct (but check additional guidance).
4. Abbreviations, annotations and conventions used in the detailed mark scheme:
/ = alternative and acceptable answers for the same marking point
(1) $\quad=$ separates marking points
not/reject = answers which are not worthy of credit
ignore $\quad=$ statements which are irrelevant - applies to neutral answers
allowlaccept $=$ answers that can be accepted
(words) $\quad=$ words which are not essential to gain credit
words $\quad=$ underlined words must be present in answer to score a mark
ecf = error carried forward
AW/owtte = alternative wording
ORA = or reverse argument
E.g. mark scheme shows 'work done in lifting / (change in) gravitational potential energy' (1)
work done $=0$ marks
work done lifting = 1 mark
change in potential energy $=0$ marks
gravitational potential energy $=1$ mark
5. If a candidate alters his/her response, examiners should accept the alteration.
6. Crossed out answers should be considered only if no other response has been made. When marking crossed out responses, accept correct answers which are clear and unambiguous.
7. The list principle:

If a list of responses greater than the number requested is given, work through the list from the beginning. Award one mark for each correct response, ignore any neutral response, and deduct one mark for any incorrect response, e.g. one which has an error of science. If the number of incorrect responses is equal to or greater than the number of correct responses, no marks are awarded. A neutral response is correct but irrelevant to the question.
8. Marking method for tick boxes:

Always check the additional guidance.
If there is a set of boxes, some of which should be ticked and others left empty, then judge the entire set of boxes.
If there is at least one tick, ignore crosses. If there are no ticks, accept clear, unambiguous indications, e.g. shading or crosses.
Credit should be given for each box correctly ticked. If more boxes are ticked than there are correct answers, then deduct one mark for each additional tick. Candidates cannot score less than zero marks.
E.g. If a question requires candidates to identify a city in England, then in the boxes

Edinburgh	
Manchester	
Paris	
Southampton	

the second and fourth boxes should have ticks (or other clear indication of choice) and the first and third should be blank (or have indication of choice crossed out).

Edinburgh			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	
Manchester	\checkmark	\times	\checkmark	\checkmark	\checkmark				\checkmark	
Paris				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Southampton	\checkmark	\times		\checkmark		\checkmark	\checkmark		\checkmark	
Score:	2	2	1	1	1	1	0	0	0	NR

Question		Expected Answers	Marks	Rationale
2	a	interfere reflected by water in the food diffracted pass through a gap absorbed metal walls of the oven	3	```4 correct (3) 2 or 3 correct (2) 1 correct (1)```
	b	B (1)	1	any unambiguous correct response
		Total	4	

Question		Expected Answers	Marks	
$\mathbf{3}$	\mathbf{a}		energy (1)	1
	\mathbf{b}	\mathbf{i}	$680 \times 0.5(1)$	1
	\mathbf{b}	ii	no change of speed [1] increase of wavelength [1]	2
		Total	$\mathbf{4}$	

Question		Expected Answers		Marks	Rationale
5	a	MgSO_{4} (1)		1	any unambiguous correct response
	b	the reaction is fast at A (1); the reaction is slowing down at $B(1)$; the reaction has stopped at C (1);		3	
	c	some water is made water reacts with hydrogen hydrogen reacts with oxygen oxygen reacts with hydrogen one hydrogen reacts with one oxygen one hydrogen reacts with two oxygen two hydrogen react with one oxygen	$\begin{aligned} & \mathrm{T} \\ & \hline \mathrm{~F} \\ & \hline \mathrm{~T} \\ & \hline \mathrm{~T} \\ & \hline \mathrm{~F} \\ & \hline \mathrm{~F} \\ & \hline \mathrm{~T} \\ & \hline \end{aligned}$	3	7 correct (3) 5 or 6 correct (2) 3 or 4 correct (1) TF, TT, FF, T
		Total		7	

Question		Expected Answers								Marks		Rationale
6		(A)	(B)	(C)	(D)	G	F	H	E	3	George Finds His Equal	
		$\begin{aligned} & \text { G before } F(1) \\ & F \text { before } H(1) \\ & \text { H before } E(1) \end{aligned}$										
		Total								3		

Question	Expected Answers	Marks	Rationale
7	any four of the following, [1] each: - helps animal to survive - allows rapid response to stimuli - helps avoid predators - helps to find a mate - helps to find food	4	
	Total	4	
Question	Expected Answers	Marks	Rationale
8	$\begin{aligned} & \hline \text { memory (1) } \\ & \text { intelligence (1) } \end{aligned}$	2	Either order
	Total	2	

