RECOGNISING ACHIEVEMENT

GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE ADDITIONAL SCIENCE A
 UNIT 2 - Modules B5 C5 P5 (Foundation Tier)

SAMPLE ASSESSMENT MATERIAL
(from 2010 onwards)
Candidates answer on the question paper
Additional materials (enclosed):
None

Calculators may be used
Additional materials:

Pencil
Ruler (cm/mm)

Candidate Forename

Candidate

 Surnamentre
Number

Candidate Number

Centre

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes
- Do not write outside the box bordering each page.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S		
USE		
Qu.	Max.	Mark
1	3	
2	8	
3	4	
4	3	
5	3	
6	2	
7	4	
8	6	
9	5	
10	4	
TOTAL	42	

This document consists of $\mathbf{1 8}$ printed pages and $\mathbf{2}$ blank pages.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

speed $=$ distance travelled
time taken
momentum $=$ mass \times velocity
change of momentum $=$ resultant force x time for which it acts
work done by a force = force x distance moved by the force
change in energy $=$ work done
change in GPE $=$ weight x vertical height difference
kinetic energy $=1 / 2 \times$ mass \times [velocity] 2

Electric Circuits

```
resistance \(=\) voltage
    current
```

 Voltage across primary coil \(=\) Number of turns in primary coil
 Voltage across secondary coil = Number of turns in secondary coil
 energy transferred = power x time
power $=$ potential difference x current
efficiency $=$ energy usefully transferred $\times 100 \%$
total energy supplied

The Wave Model of Radiation
wave speed $=$ frequency \times wavelength

BLANK PAGE

Question 1 begins on page 4.

PLEASE DO NOT WRITE ON THIS PAGE

Answer all the questions.
1 James is studying cells which are undergoing mitosis.

(a) James counts the number of chromosomes in the nuclei at the start and at the end of mitosis.

What does he notice about the number of chromosomes in each nucleus?
Put a tick (\checkmark) in the correct box.

The chromosome number had decreased at the end of mitosis. \square

The chromosome number had increased at the end of mitosis.

The chromosome number had stayed the same at the end of mitosis.

(b) Here are some statements about mitosis.

Some statements are true. Some are false.
Write true or false in the box next to each statement.

statement	true or false
The new cells produced are gametes.	
The new cells produced are identical to each other.	
There are four new cells produced from each complete mitosis.	
The new cells produced are identical to the parent cell.	

[2]
[Total: 3]

2 This question is about genes.
(a) Explain how the genetic code in a cell is used to make proteins.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Body cells inside one human contain the same genes but they produce different proteins. Five people were asked to suggest how this might happen.

Which two people gave the best answers?
Put a ring around each of their names.
Jenny Anna Xena Will Andy
(c) Some of these statements are true and some are false.

Put a tick (\checkmark) in the correct box for each statement.

statement	true	false
DNA bases always pair up in the same way.		
DNA contains three different types of bases.		
DNA in different gametes is always the same.		
DNA is identical in new cells produced from the same parent cell by mitosis.		
DNA has a double helix structure.		

3 Theo is carrying out some experiments using plants.
He puts some young plants in a box and shines a light through a hole in the side of the box.

(a) In which direction will the stems bend?

Put a tick (\checkmark) in the correct box.
away from the light \square
towards the light \square
not at all \square
(b) Theo's teacher asks him to take some cuttings from an older plant.

He dips the cut surface of the stem in powder before planting it in some soil.

(i) What does the powder contain?

Put a ring around the correct answer.
fertiliser
hormones
pesticides
(ii) The cutting grows into a new plant.

Complete the sentences using words from the list below.
leaf phloem root unspecialisedThe cut stem grows to form new
\qquad cells.
New xylem tissue forms from cells.

4 The rocks in the Earth's crust are made of many different elements.
The table shows approximate amounts of some of these elements.

element	percentage by mass (\%)
oxygen	50
silicon	25
aluminium	10
iron	5
others	10

(a) Use the names of the various elements to label the pie chart to show this information. The labels for two of the elements have been completed for you.

(b) Which element is there the most of?

Write the name of the element in the space below.

5 Some rocks contain copper.
Copper mines are very big.

Explain why copper mines are very big.
\qquad
\qquad
\qquad
\qquad

6 Mary draws a diagram of a chemical compound.

(a) Put a ring around the number of different elements in this compound.

3	4	6	10

(b) What is the formula of this compound?

Put a ring around the correct answer.
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
$\mathrm{C}_{3} \mathrm{H}_{8}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$

7 (a) Wilhelmina draws part of the carbon cycle.

(i) Which stage of the cycle ($\mathbf{1}$ to $\mathbf{9}$) shows carbon being transferred to animals?
(ii) Carbon can get from the air into the rocks by two different routes.

Put numbers from the carbon cycle in the boxes to show both of these routes.

(b) Wilhelmina finds out the composition of some of the molecules involved in the carbon cycle.

	\% composition by mass			
	carbon	hydrogen	oxygen	nitrogen
fat	76.9	12.4	10.7	-
carbohydrate	40	6.7	53.3	-
DNA	33.2	4	44.3	8.6
protein	32	6.7	42.7	18.6

(i) Which two types of molecules contain only carbon, hydrogen and oxygen?
\qquad and
(ii) Name all the elements in protein.

8 Karen makes this electric circuit.

(a) She completes the circuit by closing the switch.

This action makes the filament lamp glow.
Explain closing the switch makes the lamp glow.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The lamp only glows dimly when Karen presses the switch.

Describe three changes to the circuit which would allow the same lamp to glow more brightly.
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

Question 9 starts on page 16
PLEASE DO NOT WRITE ON THIS PAGE

9 Most of our mains electricity is made in power stations.

(a) What is the name of the machine which produces electricity in a power station? Put arring around the correct answer.
generator reactor transformer
(b) Jake produces electricity by moving a bar magnet into a coil of wire.

Complete the sentences.
Choose the correct numbers from this list.
You may use each number once, more than once or not at all.
-0.5
0.0
$+0.5$

As Jake moves the magnet into the coil, the voltmeter reads -0.5 V .
When Jake leaves the magnet in the coil, the voltmeter reads \qquad V.

As Jake moves the magnet back out of the coil, the voltmeter reads \qquad .V.
(c) Jake knows that batteries also make electricity.

Draw lines to join the source of electricity to its type of current and how it behaves.

10 This circuit uses a thermistor.

(a) What affects the resistance of a thermistor?

Put a ring around the correct answer.
light intensity pressure temperature
[1]
(b) The battery provides a potential difference of 6 V for the circuit.

Complete the sentences.
Choose correct words from this list.
current energy force power voltage

Potential difference is another term for
It is a measure of the \qquad transferred from charge as it passes through a component.
(c) Two of the cells are removed from the battery.

This reduces the reading of the voltmeter to only 1 V .
Put a tick (\checkmark) in the box next to the correct reason.
The voltmeter reading goes down because ...
... there is more current in the resistor.
... there is less resistance in the thermistor.
\square
\square . there is less potential difference across the battery. \square

END OF QUESTION PAPER

[^0]
The Periodic Table of the Elements

12		Key										3	4	5	6	7	$\begin{gathered} 0 \\ \hline \begin{array}{c} 4 \\ \text { He } \\ \text { nelium } \\ 2 \end{array} \end{gathered}$				
			$\begin{gathered} 1 \\ \begin{array}{c} \text { hydrogen } \\ 1 \end{array} \end{gathered}$																		
$\begin{gathered} 7 \\ \mathbf{L i} \\ \text { lithium } \\ 3 \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{Be} \\ \text { beryllium } \\ 4 \end{gathered}$						relat at atomic	atomic mic sym name proton)	mass ol umber							$\begin{gathered} 11 \\ \mathbf{B} \\ \text { boron } \\ 5 \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{C} \\ \text { carbon } \\ 6 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{N} \\ \text { nitrogen } \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ 0 \\ \text { oxygen } \\ 8 \end{gathered}$	$\begin{gathered} 19 \\ \mathbf{F} \\ \text { fluorine } \\ 9 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ne} \\ \text { neon } \\ 10 \end{gathered}$
$\begin{gathered} 23 \\ \mathrm{Na} \\ \text { sodium } \\ 11 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{M g} \\ \text { magnesium } \\ 12 \end{gathered}$											$\begin{gathered} 27 \\ \mathbf{A l} \\ \text { aluminium } \\ 13 \end{gathered}$	$\begin{gathered} 28 \\ \mathrm{Si} \\ \text { silicon } \\ 14 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{P} \\ \text { phosphorus } \\ 15 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{S} \\ \text { sulfur } \\ 16 \end{gathered}$	$\begin{gathered} 35.5 \\ \text { Cl } \\ \text { chlorine } \\ 17 \end{gathered}$	$\begin{gathered} 40 \\ \text { argon } \\ \text { argon } \end{gathered}$				
$\begin{gathered} 39 \\ \mathbf{K} \\ \text { potassium } \\ 19 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{C a} \\ \text { calcium } \\ 20 \end{gathered}$	$\begin{gathered} 45 \\ \text { Sc } \\ \text { scandium } \\ 21 \end{gathered}$	$\begin{gathered} 48 \\ \mathrm{Ti} \\ \text { titanium } \\ 22 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{V} \\ \text { vanadium } \\ 23 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Cr} \\ \text { chromium } \\ 24 \end{gathered}$	55 $\mathbf{M n}$ manganese 25	$\begin{aligned} & 56 \\ & \text { Fe } \\ & \text { iron } \\ & 26 \end{aligned}$	$\begin{gathered} 59 \\ \text { Co } \\ \text { cobalt } \\ 27 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Ni} \\ \text { nickel } \\ 28 \end{gathered}$	$\begin{gathered} 63.5 \\ \text { Cu } \\ \text { copper } \\ 29 \end{gathered}$	$\begin{aligned} & 65 \\ & \text { Zn } \\ & \text { zinc } \\ & 30 \end{aligned}$	$\begin{gathered} 70 \\ \text { Ga } \\ \text { gallium } \\ 31 \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{G e} \\ \text { germanium } \\ 32 \end{gathered}$	75 As arsenic 33	$\begin{gathered} 79 \\ \text { Se } \\ \text { selenium } \\ 34 \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Br} \\ \text { bromine } \\ 35 \end{gathered}$	$\begin{gathered} 84 \\ \mathbf{K r} \\ \text { krypton } \\ 36 \end{gathered}$				
$\begin{gathered} 85 \\ \mathbf{R b} \\ \text { rubidium } \\ 37 \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Sr} \\ \text { strontium } \\ 38 \end{gathered}$	$\begin{gathered} 89 \\ \mathbf{Y} \\ \text { y trium } \\ 39 \end{gathered}$	$\begin{gathered} 91 \\ \text { Zr } \\ \text { zirconium } \\ 40 \end{gathered}$	$\begin{gathered} 93 \\ \mathrm{Nb} \\ \text { niobium } \\ 41 \end{gathered}$	96 $\mathbf{M o}$ molybdenum 42	[98] Tc technetium 43	$\begin{gathered} 101 \\ \mathrm{Ru} \\ \text { ruthenium } \\ 44 \end{gathered}$	$\begin{gathered} 103 \\ \text { Rh } \\ \text { rhodium } \\ 45 \end{gathered}$	$\begin{gathered} 106 \\ \text { Pd } \\ \text { palladium } \\ 46 \end{gathered}$	$\begin{gathered} 108 \\ \text { Ag } \\ \text { silver } \\ 47 \end{gathered}$	$\begin{gathered} 112 \\ \text { Cd } \\ \text { cadmium } \\ 48 \end{gathered}$	$\begin{gathered} 115 \\ \text { In } \\ \text { indium } \\ 49 \end{gathered}$	$\begin{aligned} & 119 \\ & \text { Sn } \\ & \text { tin } \\ & 50 \end{aligned}$	$\begin{gathered} 122 \\ \text { Sb } \\ \text { antimony } \\ 51 \end{gathered}$	$\begin{gathered} 128 \\ \mathrm{Te} \\ \text { tellurium } \\ 52 \end{gathered}$	$\begin{gathered} 127 \\ \text { I } \\ \text { iodine } \\ 53 \end{gathered}$	$\begin{gathered} 131 \\ \text { Xe } \\ \text { xenon } \\ 54 \end{gathered}$				
$\begin{gathered} 133 \\ \text { Cs } \\ \text { caesium } \\ 55 \end{gathered}$	$\begin{gathered} 137 \\ \text { Ba } \\ \text { barium } \\ 56 \end{gathered}$	$\begin{gathered} 139 \\ \text { La* } \\ \text { lanthanum } \\ 57 \end{gathered}$	$\begin{gathered} 178 \\ \mathbf{H f} \\ \text { Hafnium } \\ 72 \end{gathered}$	$\begin{gathered} 181 \\ \text { Ta } \\ \text { tantalum } \\ 73 \end{gathered}$	$\begin{gathered} 184 \\ \mathbf{W} \\ \text { Wungsten } \\ 74 \end{gathered}$	$\begin{gathered} 186 \\ \text { Re } \\ \text { rhenium } \\ 75 \end{gathered}$	$\begin{gathered} 190 \\ \text { Os } \\ \text { osmium } \\ 76 \end{gathered}$	$\begin{gathered} 192 \\ \text { Ir } \\ \text { iridium } \\ 77 \end{gathered}$	$\begin{gathered} 195 \\ \text { Pt } \\ \text { platinum } \\ 78 \end{gathered}$	$\begin{gathered} 197 \\ \mathrm{Au} \\ \text { gold } \\ 79 \end{gathered}$	$\begin{gathered} 201 \\ \mathbf{H g} \\ \text { mercury } \\ 80 \end{gathered}$	$\begin{gathered} 204 \\ \text { Tl } \\ \text { thallium } \\ 81 \end{gathered}$	$\begin{gathered} 207 \\ \text { Pb } \\ \text { lead } \\ 82 \end{gathered}$	$\begin{gathered} 209 \\ \text { Bi } \\ \text { bismuth } \\ 83 \end{gathered}$	$\begin{gathered} {[209]} \\ \text { Po } \\ \text { polonium } \\ 84 \end{gathered}$	$\begin{gathered} {[210]} \\ \text { At } \\ \text { Atatine } \\ 85 \end{gathered}$	$\begin{gathered} {[222]} \\ \text { Rn } \\ \text { radon } \\ 86 \end{gathered}$				
$\begin{gathered} {[223]} \\ \mathrm{Fr} \\ \text { francium } \\ 87 \end{gathered}$	$\begin{gathered} {[226]} \\ \mathbf{R a} \\ \text { radium } \\ 88 \end{gathered}$	$\begin{gathered} {[227]} \\ \mathbf{A c c}^{\mathbf{A c t i n i u m ~}} \\ 89 \end{gathered}$	$\begin{gathered} {[261]} \\ \mathbf{R f} \\ \text { rutheroforium } \\ 104 \end{gathered}$	$\begin{gathered} {[262]} \\ \text { Db } \\ \text { dubnium } \\ 105 \end{gathered}$	$[266]$ $\mathbf{S g}$ seaborgium 106	$\begin{gathered} {[264]} \\ \text { Bh } \\ \text { bohrium } \\ 107 \end{gathered}$	$\begin{gathered} {[277]} \\ \text { Hs } \\ \text { hassium } \\ 108 \end{gathered}$	$\begin{gathered} {[268]} \\ \mathrm{Mt} \\ \text { meitrerium } \\ 109 \end{gathered}$	$\begin{gathered} {[271]} \\ \text { Ds } \\ \text { darmstadium } \\ 110 \end{gathered}$	$\begin{gathered} \hline[272] \\ \mathbf{R g} \\ \text { roentgeniu } \\ 111 \end{gathered}$	Elements with atomic numbers 112-116 have been reported but not fully authenticated										

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number

CONFIDENTIAL

GCSE Unit

MARK SCHEME

SAMPLE ASSESSMENT MATERIAL
(from 2010 onwards)
Additional Science A (J631)
Modules B5, C5 and P5
Foundation Tier

A216/01

Maximum Mark: 42

Guidance for Examiners

Additional Guidance within any mark scheme takes precedence over the following guidance.

1. Mark strictly to the mark scheme.
2. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.
3. Accept any clear, unambiguous response which is correct, e.g. mis-spellings if phonetically correct (but check additional guidance).
4. Abbreviations, annotations and conventions used in the detailed mark scheme:
/ = alternative and acceptable answers for the same marking point
(1) $\quad=$ separates marking points
not/reject = answers which are not worthy of credit
ignore $\quad=$ statements which are irrelevant - applies to neutral answers
allowlaccept $=$ answers that can be accepted
(words) $\quad=$ words which are not essential to gain credit
words $\quad=$ underlined words must be present in answer to score a mark
ecf = error carried forward
AW/owtte = alternative wording
ORA = or reverse argument
E.g. mark scheme shows 'work done in lifting / (change in) gravitational potential energy' (1)
work done $=0$ marks
work done lifting = 1 mark
change in potential energy $=0$ marks
gravitational potential energy $=1$ mark
5. If a candidate alters his/her response, examiners should accept the alteration.
6. Crossed out answers should be considered only if no other response has been made. When marking crossed out responses, accept correct answers which are clear and unambiguous.
7. The list principle:

If a list of responses greater than the number requested is given, work through the list from the beginning. Award one mark for each correct response, ignore any neutral response, and deduct one mark for any incorrect response, e.g. one which has an error of science. If the number of incorrect responses is equal to or greater than the number of correct responses, no marks are awarded. A neutral response is correct but irrelevant to the question.
8. Marking method for tick boxes:

Always check the additional guidance.
If there is a set of boxes, some of which should be ticked and others left empty, then judge the entire set of boxes.
If there is at least one tick, ignore crosses. If there are no ticks, accept clear, unambiguous indications, e.g. shading or crosses.
Credit should be given for each box correctly ticked. If more boxes are ticked than there are correct answers, then deduct one mark for each additional tick. Candidates cannot score less than zero marks.
E.g. If a question requires candidates to identify a city in England, then in the boxes

Edinburgh	
Manchester	
Paris	
Southampton	

the second and fourth boxes should have ticks (or other clear indication of choice) and the first and third should be blank (or have indication of choice crossed out).

Edinburgh			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	
Manchester	\checkmark	\times	\checkmark	\checkmark	\checkmark				\checkmark	
Paris				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Southampton	\checkmark	\times		\checkmark		\checkmark	\checkmark		\checkmark	
Score:	2	2	1	1	1	1	0	0	0	NR

Question		Expected Answers	Marks	
$\mathbf{4}$	\mathbf{a}	iron - 5\% section aluminium-10\% section silicon-25\% section	2	3 correct (2) $1 / 2$ correct (1)
	\mathbf{b}	oxygen	1	
		Total	$\mathbf{3}$	

Question		Expected Answers	Marks	Rationale
$\mathbf{5}$		amount of copper in the ore is very small (1); so lots of ore needed (to meet demand for the metal) (1); there is a large demand for copper (1);	3	
		Total	$\mathbf{3}$	

Question		Gd	Expected Answers	Marks	Rationale
$\mathbf{6}$	\mathbf{a}		G	3	1
	b	E	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}(1)$	1	If more than one response $=0$ marks
			Total	$\mathbf{2}$	

Question		Gd	Expected Answers		Marks	Rationale
10	a	G	temperature		1	If more than one response $=0$ marks
	b	FE	$\begin{aligned} & \text { voltage (1) } \\ & \text { energy (1) } \end{aligned}$		2	Must be in correct order
	c	F	less potential difference		1	If more than one response $=0$ marks
			Total		4	

[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

