RECOGNISING ACHIEVEMENT

GENERAL CERTIFICATE OF SECONDARY EDUCATION

TWENTY FIRST CENTURY SCIENCE
ADDITIONAL SCIENCE A
Unit 3 Modules B6 C6 P6 (Higher Tier)
SAMPLE ASSESSMENT MATERIAL
(from 2010 onwards)
Candidates answer on the question paper
Additional materials (enclosed):
None
Calculators may be used Additional materials:

Pencil
Ruler (cm/mm)

Candidate
Forename

Candidate Surname
Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Do not write outside the box bordering each page.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S		
USE		
Qu.	Max.	Mark
1	4	
2	7	
3	3	
4	4	
5	5	
6	5	
7	4	
8	5	
9	5	
TOTAL	42	

This document consists of $\mathbf{1 8}$ printed pages and $\mathbf{2}$ blank pages.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

speed $=\frac{\text { distance travelled }}{\text { time taken }}$
momentum $=$ mass \times velocity
change of momentum $=$ resultant force x time for which it acts
work done by a force $=$ force \times distance moved by the force
change in energy $=$ work done
change in GPE $=$ weight x vertical height difference
kinetic energy $=1 / 2 \times$ mass $\times\left[\right.$ velocity] ${ }^{2}$

Electric Circuits

resistance $=\frac{\text { voltage }}{\text { current }}$
Voltage across primary coil $=\quad$ Number of turns in primary coil
Voltage across secondary coil $=$ Number of turns in secondary coil
energy transferred = power x time
power $=$ potential difference \times current
efficiency $=\frac{\text { energy usefully transferred }}{\text { total energy supplied }} \times 100 \%$

The Wave Model of Radiation

wave speed $=$ frequency \times wavelength

Answer all the questions.

1 Jane has some copper.
She uses this to make copper sulfate.
(a) Jane uses one reaction from the first list and one from the second list.

Draw one straight line from the correct first reaction to the correct second reaction.

second
carbon dioxide + sulfuric acid \rightarrow copper sulfate
copper + oxygen \rightarrow copper sulfide
copper oxide + sulfuric acid \rightarrow copper sulfate
copper + sulfur \rightarrow copper oxide
copper oxide + sodium hydroxide \rightarrow copper sulfate
[2]
(b) The copper sulfate Jane makes is not pure.

She uses these four steps to purify the copper sulfate.
They are in the wrong order.
A drying
B filtration
C dissolving
D crystallisation
Fill in the boxes to show the right order. The first one has been done for you.

2 Michael reacts magnesium with sulfuric acid.

$$
\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2}
$$

(a) Use relative atomic masses from the Periodic Table on the back page of this booklet to answer the following questions.
(i) What mass of hydrogen is produced when 24 g of magnesium react with an excess of sulfuric acid?
mass of hydrogen $=$
(ii) What is the relative formula mass of magnesium sulfate, MgSO_{4} ?
relative formula mass =
(iii) What mass of magnesium sulfate is produced when 3 g of magnesium react with an excess of sulfuric acid?
mass of magnesium sulfate $=$
(b) Michael works out that his reaction should produce 8 g of magnesium sulfate. In fact it only produces 2 g .
Put a ring around the percentage yield for this reaction.
$16 \% \quad 25 \% \quad 40 \% \quad 60 \%$
(c) Michael reacts magnesium with an excess of sulfuric acid at $20^{\circ} \mathrm{C}$.

He measures the volume of hydrogen gas given off at intervals of time.
He repeats the experiment five times, changing one of the conditions used each time.
He plots a graph for each reaction, A, B, C, D and E.
The line for Michael's first experiment at $20^{\circ} \mathrm{C}$ is marked \mathbf{A}.

(i) He carries out one reaction at $40^{\circ} \mathrm{C}$.

Which line, B, C, D or E, shows this reaction?
Put of ring around the correct answer.

> B C D E
(ii) In one reaction he uses more magnesium.

Which line, B, C, D or E, shows this reaction?
Put a ring around the correct answer.
B C D E
[1]
(iii) In one reaction he uses the same mass of magnesium, but in larger pieces.

Which line, B, C, D or E, shows this reaction?
Put or ring around the correct answer.
B C D E

3 Dave reacts magnesium carbonate with hydrochloric acid.
This produces magnesium chloride, MgCl_{2}, carbon dioxide and water.
Write down a balanced symbol equation for the reaction.

BLANK PAGE

Question 4 starts on page 8 PLEASE DO NOT WRITE ON THIS PAGE

4 Jo uses a microwave oven to heat her dinner.

(a) These sentences are about the microwave oven.

Draw a straight line from the start of each sentence to its correct end.

end

\square
... when they pass through a gap.
The microwaves are reflected ...

The microwaves are diffracted ...
... by the metal walls of the oven.

The microwaves are absorbed ...
.. where they overlap with each other.
(b) This graph shows a microwave.

Which distance, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, is the wavelength of the microwave?

5 Isobel uses a remote control to adjust her TV set.

(a) The remote control uses a beam of infrared to carry information to the TV set.

Use your understanding of photons to describe two factors which affect the intensity of the infrared beam.
\qquad
\qquad
\qquad
\qquad
(b) The infrared is modulated each time that Isobel presses a button on the remote control. The beam is pulsed on and off in a code, with a different code for each button.

Draw a straight line from the start of each sentence to its correct end.
start
\square

end

$$
\text { ... a } 0 \text { in the code. }
$$

... a 1 in the code.

... information as a digital code.

The pulsed infrared beam transfers ...
(c) An LED is the source of the infrared in the remote control.

The LED is enclosed in a plastic lens.
(i) As the infrared leaves the plastic, most of it changes direction.

What is the name of this process?
Put a ring around the correct answer.
diffraction reflection refraction rotation
(ii) Which one of these statements explains the change of direction?

Put a tick (\checkmark) in the box next to the correct answer.

The infrared spreads out as it leaves the lens.

The infrared rotates against the plastic as it reflects off the air.

The infrared speeds up as it moves from the plastic into the air.

The infrared slows down as it moves from the plastic into the air.

6 Jenny is a presenter for Radio CA.

(a) Jenny sings into the microphone.
(i) The speed of sound waves in the studio is $340 \mathrm{~m} / \mathrm{s}$.

Jenny sings a note of frequency 680 Hz .
Which of these calculations gives the wavelength of her sound?
Put a ring around the correct answer.
680
680×340
340
$680+340$
340
680
(ii) Here are some statements about sound waves.

Some of these statements are true. Some are false.
Write \mathbf{T} in the box next to each true statement and \mathbf{F} in the box next to each false one.

The disturbance of a sound wave ...
... and its energy flow are in the same direction.
... increases in amplitude as the sound gets louder.
... is at right angles to the wave's direction of energy flow. \square
(b) Bill listens to Jenny on his radio receiver.

Radio waves carry information about the sound in Jenny's studio to Bill's receiver.
Describe two different ways in which the information can be carried by the radio wave.
\qquad
\qquad
\qquad
\qquad
[Total: 5]

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

7 Charlie carries out an experiment using woodlice.
He puts 20 woodlice into the centre of a petri dish so that they can move freely into four chambers, A, B, C and D. Each chamber has different conditions.

The woodlice tend to gather in dark areas and also in moist areas.
The behaviour pattern of the woodlice is caused by simple reflex actions.
Why are simple reflex actions important for animals?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

8 The Russian scientist Ivan Pavlov is famous for his work with learned behaviour in dogs. His experiments included the following steps.

- A dog salivates when given food.
- A bell is rung each time the dog is fed.
- After some time, the bell is rung without giving the dog food.
- The dog salivates when it hears the bell.
(a) What is the function of each step?

Draw a straight line from each step to its correct function.

(b) Which part of the dog's brain is involved in learned behaviour patterns?

Put a ring around the correct answer.
hypothalamus pituitary gland medulla cerebral cortex
(c) Which of the following types of behaviour are learned?

Put a tick (\checkmark) in the box next to each correct answer.
Some bacteria can swim towards sources of food. \square

Some birds may avoid eating caterpillars with warning colours. \square

Houseflies fly rapidly away if they detect any sign of movement.

Snails draw into their shells if they detect any sign of movement.

Goldfish may swim to the front of their tank when people walk up to feed them. \square
(d) Three friends discuss different ways of explaining what happens in the human brain when we learn.

Put a ring around the names of the two people with the best explanations.
Jim Hannah Harry

9 This question is about synapses between sensory and motor neurons.
(a) Here are the steps which take place at a synapse as an impulse passes from a sensory neuron to a motor neuron.

They are in the wrong order.
A chemical released into the synapse
B chemical diffuses across the synapse
C motor neuron transmits an impulse
D sensory neuron transmits an impulse
E chemical binds to the receptor molecules
Fill in the boxes to show the right order. The first one has been done for you.

[3]
(b) The drug ecstasy blocks the removal of the synapse chemical serotonin.

How will this affect the amount of serotonin in the synapse gap between two neurons?
Put a tick (\checkmark) in the box next to the correct answer.

(c) Synapse chemicals, like serotonin, are recognised by a specific receptor molecule found on one side of the synapse.

How does this affect the transmission of nerve impulses?
Put a tick (\checkmark) in the box next to the correct answer.
The strength of the nerve impulse is increased.

The nerve impulses can only travel in one direction.

The speed of the nerve impulse transmission is increased. \square

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number

CONFIDENTIAL

GCSE Unit
MARK SCHEME
SAMPLE ASSESSMENT MATERIAL
(from 2010 onwards)
Additional Science A (J631)
Modules B6, C6 and P6
Higher Tier
A217/02
Maximum Mark: 42

Guidance for Examiners

> Additional Guidance within any mark scheme takes precedence over the following guidance.

1. Mark strictly to the mark scheme.
2. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.
3. Accept any clear, unambiguous response which is correct, e.g. mis-spellings if phonetically correct (but check additional guidance).
4. Abbreviations, annotations and conventions used in the detailed mark scheme:
l = alternative and acceptable answers for the same marking point
(1) $\quad=$ separates marking points
not/reject = answers which are not worthy of credit
ignore $\quad=$ statements which are irrelevant - applies to neutral answers
allowlaccept $=$ answers that can be accepted
(words) = words which are not essential to gain credit
words $\quad=$ underlined words must be present in answer to score a mark
ecf = error carried forward
AW/owtte = alternative wording
ORA = or reverse argument
E.g. mark scheme shows 'work done in lifting / (change in) gravitational potential energy' (1)
work done = 0 marks
work done lifting = 1 mark
change in potential energy $=0$ marks
gravitational potential energy $=1$ mark
5. If a candidate alters his/her response, examiners should accept the alteration.
6. Crossed out answers should be considered only if no other response has been made. When marking crossed out responses, accept correct answers which are clear and unambiguous.
7. The list principle:

If a list of responses greater than the number requested is given, work through the list from the beginning. Award one mark for each correct response, ignore any neutral response, and deduct one mark for any incorrect response, e.g. one which has an error of science. If the number of incorrect responses is equal to or greater than the number of correct responses, no marks are awarded. A neutral response is correct but irrelevant to the question.
8. Marking method for tick boxes:

Always check the additional guidance.
If there is a set of boxes, some of which should be ticked and others left empty, then judge the entire set of boxes.
If there is at least one tick, ignore crosses. If there are no ticks, accept clear, unambiguous indications, e.g. shading or crosses.
Credit should be given for each box correctly ticked. If more boxes are ticked than there are correct answers, then deduct one mark for each additional tick. Candidates cannot score less than zero marks.
E.g. If a question requires candidates to identify a city in England, then in the boxes

Edinburgh	
Manchester	
Paris	
Southampton	

the second and fourth boxes should have ticks (or other clear indication of choice) and the first and third should be blank (or have indication of choice crossed out).

Edinburgh			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	
Manchester	\checkmark	\times	\checkmark	\checkmark	\checkmark				\checkmark	
Paris				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Southampton	\checkmark	\times		\checkmark		\checkmark	\checkmark		\checkmark	
Score:	2	2	1	1	1	1	0	0	0	NR

Question		Expected Answers	Marks		
$\mathbf{2}$	\mathbf{a}	i	$2(1)$	1	
		ii	$120(1)$	1	allow 120 g If no total given allow '24+32+64' or '24+32+4x16'
		iii	$15(1)$	1	
	b		$25 \%(1)$	1	
	c	i	B (1)	1	
		ii	C (1)	1	
		iii	D (1)	1	

Question		Expected Answers	Marks	Rationale
$\mathbf{3}$	\mathbf{a}	[3 marks] The candidate shows a good understanding of the whole argument, and covers all the necessary components. The answer is expressed clearly and logically. [2 marks] The candidate shows a partial understanding of the argument and covers two of the necessary components. The answer is expressed clearly.	Necessary components - correct symbols for reactants before the arrow $\left(\mathrm{HCl}, \mathrm{MgCO}_{3}\right) ;$ correct symbol for products after the arrow $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{MgCl}_{2}\right) ;$ no ecf: balanced symbol equation $2 \mathrm{HCl}+\mathrm{MgCO}_{3}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ $+\mathrm{MgCl}_{2}$	
[1 mark] The candidate shows a limited understanding of the argument and covers only one of the necessary components. The answer may not be expressed in a logical sequence.	Total			

Question			Expected Answers	Marks	Rationale
Q	a		interfere by water in the food reflected pass through a gap diffracted metal walls of the oven absorbed	3	$\begin{aligned} & 4 \text { correct (3) } \\ & 3 \text { or } 2 \text { correct (2) } \\ & 1 \text { correct (1) } \end{aligned}$
	b		B (1)	1	
			Total	4	

Question		Expected Answers	Marks	Rationale
$\mathbf{7}$		any four of the following, [1] each: \bullet • helps animal to survive \bullet • allows rapid response to stimuli helps avoid predators • helps to find a mate \bullet helps to find food	4	

Section total

