RECOGNISING ACHIEVEMENT

GENERAL CERTIFICATE OF SECONDARY EDUCATION
TWENTY FIRST CENTURY SCIENCE
ADDITIONAL SCIENCE A
UNIT 1 - Modules B4 C4 P4 (Higher Tier)
SAMPLE ASSESSMENT MATERIAL
(from 2010 onwards)
Candidates answer on the question paper
Additional materials (enclosed):
None
Calculators may be used
Additional materials:

Candidate
Forename

Candidate Surname
orname

Candidate Number
Centre
Number

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Do not write outside the box bordering each page.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATE

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42. A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S		
USE		
Qu.	Max.	Mark
1	5	
2	5	
3	1	
4	1	
5	2	
6	4	
7	5	
8	5	
9	4	
10	7	
11	3	
TOTAL	42	

This document consists of $\mathbf{1 7}$ printed pages and $\mathbf{3}$ blank pages.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

speed $=$ distance travelled
time taken
momentum $=$ mass \times velocity
change of momentum $=$ resultant force x time for which it acts
work done by a force = force x distance moved by the force
change in energy = work done
change in GPE $=$ weight x vertical height difference
kinetic energy $=1 / 2 \times$ mass \times [velocity] 2

Electric Circuits

```
resistance \(=\) voltage
                    current
```

$\frac{\text { Voltage across primary coil }}{\text { Voltage across secondary coil }}=\frac{\text { Number of turns in primary coil }}{\text { Number of turns in secondary coil }}$
energy transferred = power x time
power $=$ potential difference \times current
efficiency $=$ energy usefully transferred $\times 100 \%$
total energy supplied
The Wave Model of Radiation
wave speed $=$ frequency \times wavelength

Answer all the questions.
1 Jenny studies four elements $\mathrm{Li}, \mathrm{Na}, \mathrm{K}$ and Cs .
She finds this information in a book.

	boiling point in ${ }^{\circ} \mathrm{C}$
Li	1342
Na	883
K	760

(a) The book does not list data for the element Cs.

Suggest a value for the boiling point of Cs.
Give reasons for your answer.
boiling point $=$
${ }^{\circ} \mathrm{C}$
\qquad
\qquad
\qquad
\qquad
(b) Jenny carefully adds some potassium to cold water.

Describe what she sees.
Include a word equation for the reaction.
\qquad
\qquad
\qquad
\qquad

2 Lithium chloride is an ionic compound. It dissolves in water.
(a) Which diagram, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, shows the particles in a lithium chloride solution?
A

B

C

(b) How can we be certain that lithium chloride is ionic?

Put a tick (\checkmark) in the box next to the correct answer.
Solid lithium conducts electricity.

Solid lithium chloride conducts electricity.

Molten lithium chloride conducts electricity.

Lithium chloride has a high melting point. \square
(c) Lithium reacts with bromine.

Balance the equation for this reaction.

[2]
(d) Solid iron also reacts with bromine vapour. It makes crystals of iron bromide.

Add state symbols to the equation below.

$$
\begin{equation*}
3 \mathrm{Br}_{2}(\ldots \ldots)+2 \mathrm{Fe}(\ldots \ldots) \rightarrow 2 \mathrm{FeBr}_{3}(\ldots \ldots) \tag{1}
\end{equation*}
$$

3 When Bobby throws copper compounds into a flame, the flame gives a green light.
When Bobby throws calcium compounds into a flame, the flame gives a red light.
He uses a spectrometer to compare the spectrum of calcium with that of copper.
A spectrum is made of a series of lines.

Put a tick (\checkmark) in the box next to the correct statement about a calcium spectrum.
The lines are in the same place as the copper lines. All the lines are red.

The lines are in different places from the copper lines. Each line is a different colour.

The lines are in the same place as the copper lines. Each line is a different colour.

The lines are in different places from the copper lines. All the lines are green.

4 The formula of sodium phosphate is $\mathrm{Na}_{3} \mathrm{PO}_{4}$. The sodium ion is $\mathbf{N a}^{+}$.
Put aring around the correct formula of the phosphate ion.
$\mathrm{PO}_{4}{ }^{3+}$
$\mathrm{PO}_{4}{ }^{4+}$
$\mathrm{PO}_{4}{ }^{3-}$
$\mathrm{PO}_{4}{ }^{4-}$
[Total: 1]

5 The table shows the numbers of protons, neutrons and electrons in different particles A, B, C, D and E .

	A	B	C	D	E
number of protons	11	11	11	9	9
number of neutrons	11	12	11	10	10
number of electrons	11	11	10	9	10

Which particle has the greatest mass?
Which particle has a negative charge? \qquad
Which particles are atoms?

6 The diagram shows the forces acting on a helicopter in level flight.

(a) What is the direction of the resultant force on the helicopter?

Put a/ringaround the correct answer.
backwards downwards forwards upwards
[1]
(b) What is the size of the resultant force on the helicopter?

Put a ring around the correct answer.
$1 \mathrm{kN} \quad 2 \mathrm{kN} \quad 3 \mathrm{kN} \quad 5 \mathrm{kN} \quad 12 \mathrm{kN}$
(c) Which quantities will be increasing for the helicopter?

Put ticks (\checkmark) in the boxes next to the two correct answers.

7 Paul is a taxi driver in town.

He claims that his speed is always less than $50 \mathrm{~km} / \mathrm{h}$, and he can use friction to reduce his velocity to zero.
(a) Draw a straight line from each quantity to its correct definition.

quantity

speed
speed

friction

definition

the force needed to stop an object moving

the distance moved by an object in each second
how fast and in what direction an object is moving
a counter force arising from the motion of an object
(b) What is the correct way of converting 50 kilometres per hour into metres per second?

Put a ring around the correct answer.
$\frac{50000}{60} \quad \frac{50000}{3600} \quad 50000 \times 3600 \quad 50000 \times 60$
(c) Paul is travelling at $12 \mathrm{~m} / \mathrm{s}$ when he slams on the brakes.

The speed of the car drops steadily to zero in just 3.0 s .
The car moves forwards by 18 m in that time.
Complete the distance-time graph for the car as it slows down.
The brakes are applied at 1.0 s .

[2]
(d) Why should Paul wear a seatbelt?

Put a tick (\checkmark) in the box next to the correct answer.
A seatbelt increases the counter force on him in a crash.

A seatbelt transfers less energy to him as the car slows down.

A seatbelt increases the time it takes for him to slow down in a crash.

A seatbelt reduces the amount of momentum he needs to lose in a crash. \square

8 Julie drops a brick into a deep well.

The brick falls through the air until it hits the water.
(a) Describe and explain the change of kinetic energy as the brick falls through the air.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The brick is moving at $30 \mathrm{~m} / \mathrm{s}$ when it hits the water.

The mass of the brick is 2 kg .
The weight of the brick is 20 N .
How much kinetic energy does it have?
Put a (ring) around the correct answer.
30 J
60 J
600 J
900 J
9000 J
(c) Julie knows that the brick's gravitational potential energy changes by 1000 J as it falls down the well into the water. She uses this to calculate the velocity of the brick when it hits the water.

Put a ring around the correct calculation.
$\sqrt{\frac{1000}{1 / 2 \times 2}} \quad \sqrt{\frac{1000}{10}} \quad \frac{1000}{10} \quad \frac{1000}{2}$

9 Andrew draws a model to show osmosis.

\bigcirc = glucose molecule

- = water molecule

I = partially permeable membrane
(a) What does side \mathbf{B} in the model represent?

Put a tick (\checkmark) in the box next to the correct answer.
a concentrated solution

a dilute solution \square
pure water \square
(b) Why did Andrew include a partially permeable membrane in his model? Put a tick (\checkmark) in the box next to the correct answer.

To stop glucose molecules and water molecules from passing through.

To stop glucose molecules from passing through. \square

To stop water molecules from passing through. \square
(c) What happens to the water molecules?

Put a tick (\checkmark) in the box next to the correct answer.
Water molecules move mostly from side \mathbf{A} to side \mathbf{B}.

Water molecules move mostly from side \mathbf{B} to side \mathbf{A}.

Water molecules move equally between side \mathbf{A} and side \mathbf{B}.

Water molecules do not move between side \mathbf{A} and side \mathbf{B}.

(d) What will happen when Andrew adds four more glucose molecules to side \mathbf{B} in his model? Put a tick (\checkmark) in the box next to the correct answer.

Water molecules move mostly from side \mathbf{A} to side \mathbf{B}.

Water molecules move mostly from side \mathbf{B} to side \mathbf{A}.

Water molecules move equally between side \mathbf{A} and side \mathbf{B}.

Water molecules do not move between side \mathbf{A} and side \mathbf{B}.

10 Liz draws a model to show the different stages which take place when an enzyme speeds up the breakdown of a molecule.
(a) Complete diagrams B and C to show the stages in the breakdown of a molecule.

A

B

C

D
(b) What is the name of this model?

Put a ring around the correct answer.

kinetic theory	lock and		
model	key model	random collision model	nut and bolt model

(c) Liz then carries out an experiment and draws a graph of her results.

The graph shows the rate of reaction of an enzyme at different temperatures.

Use the model of enzyme action to explain the shape of the graph.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Which variable can alter the shape of the active site of the enzyme? Put a tick (\checkmark) in the box next to the correct variable.
concentration of enzyme

concentration of substrate \square
pH of mixture

speed of collisions \square

11 This question is about the hormone ADH.
(a) Which part of the body releases ADH? Put a ring around the correct answer. adrenal gland kidney pituitary gland testes
(b) Describe the function of ADH and how it is transported around the body.
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

122						1 \mathbf{H} hydrog en 1						3	4	5	6	7	0 4 $\mathbf{H e}$ helium 2
$\begin{gathered} 7 \\ \mathbf{L i} \\ \text { lithium } \\ 3 \end{gathered}$	9 Be berylliu m 4		relat at atomic	e atomic mic sym name (proton)	mass ol umber							$\begin{gathered} 11 \\ \text { B } \\ \text { boron } \\ 5 \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{C} \\ \text { carbon } \\ 6 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{N} \\ \text { nitroge } \\ \mathrm{n} \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ 0 \\ \text { oxygen } \\ 8 \end{gathered}$	$\begin{gathered} 19 \\ F \\ \text { fluorin } \\ e \\ 9 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ne} \\ \text { neon } \\ 10 \end{gathered}$
$\begin{gathered} 23 \\ \mathrm{Na} \\ \text { sodium } \\ 11 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{M g} \\ \text { magne } \\ \text { sium } \\ 12 \\ \hline \end{gathered}$											$\begin{array}{\|c} \hline 27 \\ \text { AI } \\ \text { alumini } \\ \text { um } \\ 13 \\ \hline \end{array}$	$\begin{gathered} 28 \\ \mathrm{Si} \\ \text { silicon } \\ 14 \end{gathered}$	31 \mathbf{P} phosp horus 15	$\begin{gathered} 32 \\ \mathbf{S} \\ \text { sulfur } \\ 16 \end{gathered}$	$\begin{gathered} 35.5 \\ \text { CI } \\ \text { chlorin } \\ \mathrm{e} \\ 17 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ \text { Ar } \\ \text { argon } \\ 18 \end{gathered}$
\qquad	$\begin{gathered} 40 \\ \text { Ca } \\ \text { calciu } \\ \mathrm{m} \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 45 \\ \text { Sc } \\ \text { scandi } \\ \text { um } \\ 21 \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ \mathrm{Ti} \\ \text { titaniu } \\ \mathrm{m} \\ 22 \\ \hline \end{gathered}$	51 \mathbf{V} vanadi um 23	$\begin{gathered} 52 \\ \mathrm{Cr} \\ \text { chromi } \\ \text { um } \\ 24 \\ \hline \end{gathered}$	$\begin{gathered} 55 \\ \text { Mn } \\ \text { manga } \\ \text { nese } \\ 25 \\ \hline \end{gathered}$	56 Fe iron 26	59 Co cobalt 27	59 Ni nickel 28	$\begin{gathered} 63.5 \\ \mathrm{Cu} \\ \text { copper } \\ 29 \end{gathered}$	$\begin{gathered} 65 \\ \text { Zn } \\ \text { zinc } \\ 30 \end{gathered}$	$\begin{gathered} 70 \\ \text { Ga } \\ \text { gallium } \\ 31 \end{gathered}$	73 Ge germa nium3 2	75 As arsenic 33	79 Se seleniu \qquad	$\begin{gathered} 80 \\ \mathrm{Br} \\ \text { bromin } \\ \mathrm{e} \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 84 \\ \text { Kr } \\ \text { krypto } \\ \text { n } \\ 36 \\ \hline \end{gathered}$
85 $\mathbf{R b}$ rubidiu m 37	$\begin{gathered} \hline 88 \\ \mathrm{Sr} \\ \text { stronti } \\ \text { um } \\ 38 \\ \hline \end{gathered}$	$\begin{gathered} 89 \\ \mathbf{Y} \\ \text { yttrium } \\ 39 \end{gathered}$	$\begin{gathered} 91 \\ \text { Zr } \\ \text { zirconi } \\ \text { um } \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} \hline 93 \\ \mathrm{Nb} \\ \text { niobiu } \\ \mathrm{m} \\ 41 \\ \hline \end{gathered}$	96 Mo molybd enum 42	$\begin{gathered} {[98]} \\ \text { Tc } \\ \text { techne } \\ \text { tium } \\ 43 \\ \hline \end{gathered}$	$\begin{gathered} 101 \\ \text { Ru } \\ \text { rutheni } \\ \text { um } \\ 44 \\ \hline \end{gathered}$	$\begin{gathered} \hline 103 \\ \mathbf{R h} \\ \text { rhodiu } \\ \mathrm{m} \\ 45 \\ \hline \end{gathered}$	$\begin{gathered} \hline 106 \\ \text { Pd } \\ \text { palladi } \\ \text { um } \\ 46 \end{gathered}$	$\begin{gathered} 108 \\ \text { Ag } \\ \text { silver } \\ 47 \end{gathered}$	$\begin{gathered} 112 \\ \text { Cd } \\ \text { cadmiu } \\ m \\ 48 \\ \hline \end{gathered}$	$\begin{gathered} 115 \\ \text { In } \\ \text { indium } \\ 49 \end{gathered}$	$\begin{gathered} 119 \\ \text { Sn } \\ \text { tin } \\ 50 \end{gathered}$	$\begin{gathered} \hline 122 \\ \text { Sb } \\ \text { antimo } \\ \text { ny } \\ 51 \\ \hline \end{gathered}$	$\begin{gathered} 128 \\ \mathrm{Te} \\ \text { telluriu } \\ \mathrm{m} \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} 127 \\ \mathbf{l} \\ \text { iodine } \\ 53 \end{gathered}$	$\begin{gathered} 131 \\ \mathbf{X e} \\ \text { xenon } \\ 54 \end{gathered}$
133 Cs caesiu m 55	137 Ba barium 56	$\begin{gathered} \hline 139 \\ \text { La* } \\ \text { lantha } \\ \text { num } \\ 57 \end{gathered}$	$\begin{gathered} 178 \\ \text { Hf } \\ \text { hafniu } \\ \text { m } \\ 72 \end{gathered}$	181 Ta tantalu m 73	$\begin{gathered} 184 \\ \text { w } \\ \text { tungst } \\ \text { en } \\ 74 \\ \hline \end{gathered}$	186 $\mathbf{R e}$ rheniu m 75	$\begin{gathered} 190 \\ \text { Os } \\ \text { osmiu } \\ \text { m } \\ 76 \\ \hline \end{gathered}$	$\begin{gathered} 192 \\ \text { Ir } \\ \text { iridium } \\ 77 \end{gathered}$	195 Pt platinu m 78	$\begin{gathered} 197 \\ \text { Au } \\ \text { gold } \\ 79 \end{gathered}$	201 Hg mercur y 80	$\begin{gathered} 204 \\ \text { TI } \\ \text { thalliu } \\ \mathrm{m} \\ 81 \end{gathered}$	$\begin{gathered} 207 \\ \mathrm{~Pb} \\ \text { lead } \\ 82 \end{gathered}$	209 Bi bismut h 83	$\begin{gathered} {[209]} \\ \text { Po } \\ \text { poloniu } \\ \mathrm{m} \\ 84 \end{gathered}$	$\begin{gathered} {[210]} \\ \text { At } \\ \text { astatin } \\ \mathrm{e} \\ 85 \end{gathered}$	$\begin{gathered} {[222]} \\ \mathbf{R n} \\ \text { radon } \\ 86 \end{gathered}$
$\begin{gathered} {[223]} \\ \mathrm{Fr} \\ \text { franciu } \\ \mathrm{m} \\ 87 \\ \hline \end{gathered}$	$\begin{gathered} {[226]} \\ \mathbf{R a} \\ \text { radium } \\ 88 \end{gathered}$	$\begin{gathered} {[227]} \\ \text { Ac }^{*} \\ \text { actiniu } \\ \mathrm{m} \\ 89 \\ \hline \end{gathered}$	[261] Rf rutherf ordium 104	$\begin{gathered} \text { [262] } \\ \text { Db } \\ \text { dubniu } \\ \mathrm{m} \\ 105 \\ \hline \end{gathered}$	$\begin{gathered} {[266]} \\ \mathrm{Sg} \\ \text { seabor } \\ \text { gium } \\ 106 \end{gathered}$	$\begin{gathered} {[264]} \\ \text { Bh } \\ \text { bohriu } \\ \mathrm{m} \\ 107 \\ \hline \end{gathered}$	$\begin{gathered} {[277]} \\ \text { Hs } \\ \text { hassiu } \\ \mathrm{m} \\ 108 \\ \hline \end{gathered}$	$\begin{gathered} {[268]} \\ \mathrm{Mt} \\ \text { meitne } \\ \text { rium } \\ 109 \\ \hline \end{gathered}$	[271] Ds darmst adtium 110	$\begin{gathered} {[272]} \\ \mathbf{R g} \\ \text { roentg } \\ \text { enium } \\ 111 \\ \hline \end{gathered}$	Eleme	ts with a	mic num not	ers 112 y authe	16 have cated	en rep	ed but

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number

CONFIDENTIAL

GCSE Unit
MARK SCHEME
SAMPLE ASSESSMENT MATERIAL
(from 2010 onwards)
Additional Science A (J631)
Modules B4, C4 and P4
Higher Tier
A215/02
Maximum Mark: 42

Guidance for Examiners

Additional Guidance within any mark scheme takes precedence over the following guidance.

1. Mark strictly to the mark scheme.
2. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.
3. Accept any clear, unambiguous response which is correct, e.g. mis-spellings if phonetically correct (but check additional guidance).
4. Abbreviations, annotations and conventions used in the detailed mark scheme:
/ = alternative and acceptable answers for the same marking point
(1) = separates marking points
not/reject = answers which are not worthy of credit
ignore $\quad=$ statements which are irrelevant - applies to neutral answers
allowlaccept $=$ answers that can be accepted
(words) = words which are not essential to gain credit
words $\quad=$ underlined words must be present in answer to score a mark
ecf $\quad=$ error carried forward
AW/owtte = alternative wording
ORA = or reverse argument
E.g. mark scheme shows 'work done in lifting / (change in) gravitational potential energy' (1) work done $=0$ marks work done lifting = 1 mark change in potential energy $=0$ marks gravitational potential energy $=1$ mark
5. If a candidate alters his/her response, examiners should accept the alteration.
6. Crossed out answers should be considered only if no other response has been made. When marking crossed out responses, accept correct answers which are clear and unambiguous.
7. The list principle:

If a list of responses greater than the number requested is given, work through the list from the beginning. Award one mark for each correct response, ignore any neutral response, and deduct one mark for any incorrect response, e.g. one which has an error of science. If the number of incorrect responses is equal to or greater than the number of correct responses, no marks are awarded. A neutral response is correct but irrelevant to the question.
8. Marking method for tick boxes:

Always check the additional guidance.
If there is a set of boxes, some of which should be ticked and others left empty, then judge the entire set of boxes.
If there is at least one tick, ignore crosses. If there are no ticks, accept clear, unambiguous indications, e.g. shading or crosses.
Credit should be given for each box correctly ticked. If more boxes are ticked than there are correct answers, then deduct one mark for each additional tick. Candidates cannot score less than zero marks.
E.g. If a question requires candidates to identify a city in England, then in the boxes

Edinburgh	
Manchester	
Paris	
Southampton	

the second and fourth boxes should have ticks (or other clear indication of choice) and the first and third should be blank (or have indication of choice crossed out).

Edinburgh			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	
Manchester	\checkmark	\times	\checkmark	\checkmark	\checkmark				\checkmark	
Paris				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Southampton	\checkmark	\times		\checkmark		\checkmark	\checkmark		\checkmark	
Score:	2	2	1	1	1	1	0	0	0	NR

Question			Expected Answers	Marks	Rationale
1	a		- answer between 740 and 640 - Cs below K (in the table) - boiling point decreases as you go down the table	3	
	b		any two of the following for [1] - fizzes - purple flame - melts - moves around on surface potassium + water = potassium hydroxide + hydrogen [1]	2	
			Total	5	

Question			Expected Answers			Marks	Rationale
2	a		D (1)			1	
	b		molten lithium chloride conducts		(1)	1	any clear indication of correct response for [1] e.g. cross in box, circling correct statement ...
	c		$2 \quad 2$ (2)			2	each correct box for [1]
	d		g, s, s (1)			1	must all appear to be lower case, so G, s, s for [0]
			Total			5	

Question		Expected Answers	Marks	Rationale
4		$\mathrm{PO}_{4}{ }^{3-}(1)$	1	any clear indication of correct response for [1] e.g. underlining \ldots
		Total	$\mathbf{1}$	

Question		Expected Answers	Marks	Rationale
5		B E B, A, D (any order)	2	3 correct $=2$ marks 2 or 1 correct $=1$ mark
		Total	2	

Question			Expected Answers		Marks	Rationale
7	a			\square d by an second what arising	1	correct pattern of three lines for [1] any additional lines for [0]
	b		$\frac{50000}{3600}$		1	any clear indication of correct response for [1] e.g. underlining ...
	c		curved as shown from 1 s to 4 s for horizontal at 30 m from 4 s to 5 s dstance in m	$\begin{aligned} & \text { r [1] } \\ & 1] \end{aligned}$	2	
	d		air resistance dissipates energy		1	any clear indication of correct response for [1] e.g. cross in box, circling correct statement ...
			Total		5	

Question			Expected Answers	Marks	Rationale
8	a		For answers where there is no clear hierarchical response. [3 marks] The candidate shows a good understanding of the whole argument, and covers all the necessary components. The answer is expressed clearly and logically. [2 marks] The candidate shows a partial understanding of the argument and covers two of the necessary components. The answer is expressed clearly and logically. [1 mark] The candidate shows a limited understanding of the argument and covers only one of the necessary components. The answer may not be expressed in a logical sequence.	3	Necessary components - speed of brick increases; kinetic energy increases; EITHER because work done by weight of brick as it falls; OR because gravitational potential energy decreases as brick falls;
	b		900 J (1)	1	
	c		$\sqrt{\frac{1000}{1 / 2 \times 2}}$	1	any clear indication of correct response for [1] e.g. underlining ...
			Total	5	

Question					Marks	Rationale
10	a				2	B: some part of the molecule below the dotted line and the bond is intact for [1] C: some part of the molecule below the dotted line and the bond is broken for [1]
	b	lock and key model (1)			1	
	c	For answers where there is no clear hierarchical response. [3 marks] The candidate shows a good understanding of the effect of temperature on enzymes, and covers all the necessary components. The answer is expressed clearly and logically. [2 marks] The candidate shows a partial understanding of the argument and covers two of the necessary components. The answer is expressed clearly and logically. [1 mark] The candidate shows a limited understanding of the argument and covers only one of the necessary components. The answer is expressed clearly.			3	Necessary components - (Below 50°) increasing temperature increases frequency of collisions (increasing rate); shape of active site changes at high temperature (decreasing rate);] enzyme stops working / denatured; Accept increased energy of collisions in place of increased frequency.
	d	pH of mixture		(1)	1	any clear indication of correct response for [1] e.g. cross in box, circling correct statement ...
		Total			7	

Question		Expected Answers	Marks	Rationale
$\mathbf{1 1}$	\mathbf{a}	pituitary gland (1)	any clear indication of correct response for [1] e.g. underlining \ldots	
	\mathbf{b}	controls the concentration of urine [1] transported by blood [1]	2	
		Total	$\mathbf{3}$	

