RECOGNISING ACHIEVEMENT

GENERAL CERTIFICATE OF SECONDARY EDUCATION
TWENTY FIRST CENTURY SCIENCE
ADDITIONAL SCIENCE A
UNIT 2 - Modules B5 C5 P5 (Higher Tier)
SAMPLE ASSESSMENT MATERIAL
(from 2010 onwards)
Candidates answer on the question paper

None

Calculators may be used
Additional materials:

Candidate Forename

Candidate Surname

Centre
Number

Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Do not write outside the box bordering each page.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATE

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is $\mathbf{4 2}$. A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S		
USE		
Qu.	Max.	Mark
1	5	
2	4	
3	5	
4	3	
5	2	
6	6	
7	2	
8	1	
9	6	
10	5	
11	3	
TOTAL	42	

This document consists of $\mathbf{1 8}$ printed pages and $\mathbf{2}$ blank pages.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

speed $=$ distance travelled
time taken
momentum $=$ mass \times velocity
change of momentum $=$ resultant force x time for which it acts
work done by a force = force x distance moved by the force
change in energy $=$ work done
change in GPE $=$ weight x vertical height difference
kinetic energy $=1 / 2 \times$ mass \times [velocity] 2

Electric Circuits

```
resistance \(=\) voltage
                                    current
```

$\frac{\text { Voltage across primary coil }}{\frac{\text { Voltage across secondary coil }}{}=\frac{\text { Number of turns in primary coil }}{\text { Number of turns in secondary coil }}}$
energy transferred = power x time
power $=$ potential difference x current
efficiency $=$ energy usefully transferred $\times 100 \%$
total energy supplied
The Wave Model of Radiation
wave speed $=$ frequency \times wavelength

BLANK PAGE

Question 1 begins on page 4.

PLEASE DO NOT WRITE ON THIS PAGE

Answer all the questions.
1 James is studying cells which are undergoing mitosis.

(a) James counts the number of chromosomes in the nuclei at the start and at the end of mitosis.

What does he notice about the number of chromosomes in each nucleus?
Put a tick (\checkmark) in the correct box.
The chromosome number had decreased at the end of mitosis. \square

The chromosome number had increased at the end of mitosis.

The chromosome number had stayed the same at the end of mitosis.
\square

(b) What happens to the number of organelles in the cytoplasm before the start of mitosis? Put a ring around the correct answer.
decreases
increases
stays the same
(c) (i) Here are some statements about mitosis.

Some statements are true and some are false.
Write true or false in the box next to each statement.

statement	true or false
The new cells produced are gametes.	
The new cells produced are identical to each other.	
There are four new cells produced from each complete mitosis.	
The new cells produced are identical to the parent cell.	

(ii) Which cell contains a set of chromosomes from each parent?

Put a/ring around the correct answer.
egg
sperm
zygote

2 Genes are made of DNA. The DNA contains four different bases (A, T, C and G)
The order of these bases makes a code which controls the order of amino acids in a protein made by a gene.

A triplet (sequence of three bases) is needed to code for each amino acid. Examples of this code are shown in the table.

amino acid	triplet base order
1	TGGA
2	A A C
3	C G T
4	TAT

(a) Which one of the four amino acids (1, 2, 3 or 4) will not be found in the protein produced by the following order of bases?

A	G	C	T	G	A	T	A	T	C	G	T	G	G	C

start \quad end
code code

Put a ring around the correct answer.
1
2
3
4
(b) What is the maximum number of triplets produced by the four bases? Put a ring around the correct answer.
32
64
128
256
(c) The number of different amino acids is less than the number of triplet codes available.

Three students were asked to explain this.

Who is most likely to be wrong?
Put a ring around the name of this student.
Des Maria
Ruth
[1]
(d) The DNA molecule contains two strands of bases held together in pairs.

Which bases pair together?
Draw a straight line to join each base to its pair base.
base

G
\square
pair base

3 Rosie is a scientist working in a tissue culture laboratory. She carries out the following steps to grow tissues for transplanting into a particular patient.

A human embryo is grown from an egg cell with the original nucleus replaced with the nucleus from one of the patient's cells.

Cells are removed from the treated embryo to produce a stem cell culture.

(a) Explain why cells from the culture are injected into the patient.
\qquad
\qquad
\qquad
\qquad
(b) Which stages of development can be used successfully for collecting stem cells? Put a ring around the latest stage that can be used successfully for collecting stem cells.

2 cells

4 cells

8 cells

16 cells

32 cells
(c) Rosie asks a group of her friends to compare human cells with plant cells.

Which two people gave correct answers?

4 (a) Wilhelmina draws part of the carbon cycle.

(i) Which stage of the cycle ($\mathbf{1}$ to $\mathbf{9}$) shows carbon being transferred to animals?
(ii) Carbon can get from the air into the rocks by two different routes.

Put numbers from the carbon cycle in the boxes to show both of these routes.

	first stage	second stage
Route A		

Route B

(b) Wilhelmina finds out the composition of some of the molecules involved in the carbon cycle.

	\% composition by mass			
	carbon	hydrogen	oxygen	nitrogen
fat	76.9	12.4	10.7	-
carbohydrate	40	6.7	53.3	-
DNA	33.2	4	44.3	8.6
protein	32	6.7	42.7	18.6

Which two types of molecules contain only carbon, hydrogen and oxygen?
\qquad and

5 These are the chemical symbols for some ions.
Br^{-}
Cl^{-}
\mathbf{K}^{+}
$\mathbf{M g}^{2+}$
Na^{+}
O^{2-}
S^{2-}
$\mathrm{SO}_{4}{ }^{2-}$
(a) What is the formula of magnesium bromide?

Put a ring around the correct answer.
Mg 2 Br
$\mathrm{Mg}_{2} \mathrm{Br}$
MgBr
MgBr_{2}
(b) What is the formula of sodium sulfate?

Put of ring around the correct answer.

$$
\begin{array}{lllll}
\mathrm{Na}_{2} \mathrm{SO}_{4} & \mathrm{NaSO}_{4} & \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2} & \mathrm{NaS} & \mathrm{Na}_{2} \mathrm{~S}
\end{array}
$$

6 Aluminium is obtained from its ore by electrolysis.
(a) Here are some statements about electrolysis.

Some statements are correct, some are incorrect.
Put a tick (\checkmark) in the best box for each statement.

	correct	incorrect
Ions are produced when the ore melts.		
lons are present in the solid ore.		
lons in the solid move to the electrodes.		
Negative ions move towards the anode during electrolysis.		
Metals are discharged when their ions gain electrons.		
Positive ions move towards the cathode during electrolysis.		
lons in the liquid move to the electrodes.		

(b) Aluminium ore is made of aluminium oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Explain why 100 tonnes of pure aluminium oxide yields 53 tonnes of aluminium metal.
[Relative atomic mass $\mathbf{O}=16 ; \mathbf{A I}=27$]
\qquad
\qquad
\qquad
\qquad
\qquad

7 A sample of copper ore is made of crystals.
In the space below, draw a picture to show the typical arrangement of nine ions in a crystal. Your answer should include the charge on each ion.

8 Which statement is the best explanation of why air is a gas?
A Air is made of several substances.
B The forces inside each molecule are weak.
C The forces between molecules are weak.
D Air has a low density.

9 Karen makes this electric circuit.

(a) She completes the circuit by closing the switch.

This action makes the filament lamp glow.
Explain how closing the switch makes the lamp glow.
\qquad
\qquad
\qquad
\qquad
(b) The lamp only glows dimly when Karen presses the switch.

Describe three changes to the circuit which would allow the same lamp to glow more brightly.
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

Question 10 starts on page 16
PLEASE DO NOT WRITE ON THIS PAGE

10 Most of our electricity is made in power stations.

(a) The generator in a power station produces an alternating voltage.

What is the name of the process used to generate electricity?
Put a ring around the correct answer.

> metallic conduction
> electrostatic induction
> electromagnetic induction
[1]
(b) The sentences explain how electricity is produced in a power station and transferred to our homes.

A The voltage is stepped up by a transformer.
B There is an alternating voltage across the coil.
C The voltage is stepped down by a transformer.
D Alternating current is carried by the National Grid.
E Alternating current transfers energy in our homes.
F A magnet spins around a coil of wire in the generator.

Complete the table to show the correct order of the sentences.

\mathcal{F}					\mathcal{E}

(c) The primary coil of a transformer is connected to a 12 V a.c. input.

Which one of these is the correct calculation for the voltage of the a.c. output?
Put a ring around the correct calculation.
$12 \times 9 \times 5$
$12 \times \frac{9}{5}$
$12 \times \frac{5}{9}$
$5 \times \frac{9}{12}$

11 This circuit contains a thermistor.

(a) The temperature increases.

The sentences explain the change in the voltmeter reading.
They are in the wrong order.
A The potential difference across the resistor increases.
B The resistance of the thermistor decreases.
C The current in the circuit increases.
Show the correct order by writing A, B or \mathbf{C} in each box.

(b) The battery supplies a potential difference of 6 V .

At a certain temperature the current in the 45Ω resistor is 0.08 A .
Which is the correct calculation for the potential difference across the thermistor?
Put a ring around the correct calculation.
$6-(0.08 \times 45) \quad 6+(0.08 \times 45) \quad 0.08 \times 45 \quad \frac{45}{0.08}$

END OF QUESTION PAPER

[^0]| 122 | | | | | | 1
 \mathbf{H}
 hydrog
 en
 1 | | | | | | 3 | 4 | 5 | 6 | 7 | 0
 4
 $\mathbf{H e}$
 helium
 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | | | | | |
| $\begin{gathered} 7 \\ \mathbf{L i} \\ \text { lithium } \\ 3 \end{gathered}$ | 9 Be berylliu m 4 | | relat at atomic | e atomic mic sym name (proton) | mass ol
 umber | | | | | | | $\begin{gathered} 11 \\ \text { B } \\ \text { boron } \\ 5 \end{gathered}$ | $\begin{gathered} 12 \\ \mathrm{C} \\ \text { carbon } \\ 6 \end{gathered}$ | $\begin{gathered} 14 \\ \mathbf{N} \\ \text { nitroge } \\ \mathrm{n} \\ 7 \end{gathered}$ | $\begin{gathered} 16 \\ 0 \\ \text { oxygen } \\ 8 \end{gathered}$ | $\begin{gathered} 19 \\ F \\ \text { fluorin } \\ e \\ 9 \end{gathered}$ | $\begin{gathered} 20 \\ \mathrm{Ne} \\ \text { neon } \\ 10 \end{gathered}$ |
| $\begin{gathered} 23 \\ \mathrm{Na} \\ \text { sodium } \\ 11 \end{gathered}$ | $\begin{gathered} 24 \\ \mathbf{M g} \\ \text { magne } \\ \text { sium } \\ 12 \\ \hline \end{gathered}$ | | | | | | | | | | | $\begin{array}{\|c} \hline 27 \\ \text { AI } \\ \text { alumini } \\ \text { um } \\ 13 \\ \hline \end{array}$ | $\begin{gathered} 28 \\ \mathrm{Si} \\ \text { silicon } \\ 14 \end{gathered}$ | 31 \mathbf{P} phosp horus 15 | $\begin{gathered} 32 \\ \mathbf{S} \\ \text { sulfur } \\ 16 \end{gathered}$ | $\begin{gathered} 35.5 \\ \text { CI } \\ \text { chlorin } \\ \mathrm{e} \\ 17 \end{gathered}$ | $\begin{gathered} 40 \\ \text { Ar } \\ \text { argon } \\ 18 \end{gathered}$ |
| \qquad | $\begin{gathered} 40 \\ \text { Ca } \\ \text { calciu } \\ \mathrm{m} \\ 20 \\ \hline \end{gathered}$ | $\begin{gathered} 45 \\ \text { Sc } \\ \text { scandi } \\ \text { um } \\ 21 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 48 \\ \mathrm{Ti} \\ \text { titaniu } \\ \mathrm{m} \\ 22 \\ \hline \end{gathered}$ | 51
 \mathbf{V}
 vanadi
 um
 23 | $\begin{gathered} 52 \\ \mathrm{Cr} \\ \text { chromi } \\ \text { um } \\ 24 \\ \hline \end{gathered}$ | $\begin{gathered} 55 \\ \text { Mn } \\ \text { manga } \\ \text { nese } \\ 25 \\ \hline \end{gathered}$ | 56 Fe
 iron 26 | 59
 Co cobalt 27 | 59
 Ni
 nickel 28 | $\begin{gathered} 63.5 \\ \mathrm{Cu} \\ \text { copper } \\ 29 \end{gathered}$ | $\begin{gathered} 65 \\ \text { Zn } \\ \text { zinc } \\ 30 \end{gathered}$ | $\begin{gathered} 70 \\ \text { Ga } \\ \text { gallium } \\ 31 \end{gathered}$ | 73
 Ge germa nium3 2 | 75
 As arsenic 33 | 79
 Se seleniu \qquad | $\begin{gathered} 80 \\ \mathrm{Br} \\ \text { bromin } \\ \mathrm{e} \\ 35 \\ \hline \end{gathered}$ | $\begin{gathered} 84 \\ \text { Kr } \\ \text { krypto } \\ \text { n } \\ 36 \\ \hline \end{gathered}$ |
| 85 $\mathbf{R b}$ rubidiu m 37 | $\begin{gathered} \hline 88 \\ \mathrm{Sr} \\ \text { stronti } \\ \text { um } \\ 38 \\ \hline \end{gathered}$ | $\begin{gathered} 89 \\ \mathbf{Y} \\ \text { yttrium } \\ 39 \end{gathered}$ | $\begin{gathered} 91 \\ \text { Zr } \\ \text { zirconi } \\ \text { um } \\ 40 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 93 \\ \mathrm{Nb} \\ \text { niobiu } \\ \mathrm{m} \\ 41 \\ \hline \end{gathered}$ | 96 Mo molybd enum 42 | $\begin{gathered} {[98]} \\ \text { Tc } \\ \text { techne } \\ \text { tium } \\ 43 \\ \hline \end{gathered}$ | $\begin{gathered} 101 \\ \text { Ru } \\ \text { rutheni } \\ \text { um } \\ 44 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 103 \\ \mathbf{R h} \\ \text { rhodiu } \\ \mathrm{m} \\ 45 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 106 \\ \text { Pd } \\ \text { palladi } \\ \text { um } \\ 46 \end{gathered}$ | $\begin{gathered} 108 \\ \text { Ag } \\ \text { silver } \\ 47 \end{gathered}$ | $\begin{gathered} 112 \\ \text { Cd } \\ \text { cadmiu } \\ m \\ 48 \\ \hline \end{gathered}$ | $\begin{gathered} 115 \\ \text { In } \\ \text { indium } \\ 49 \end{gathered}$ | $\begin{gathered} 119 \\ \text { Sn } \\ \text { tin } \\ 50 \end{gathered}$ | $\begin{gathered} \hline 122 \\ \text { Sb } \\ \text { antimo } \\ \text { ny } \\ 51 \\ \hline \end{gathered}$ | $\begin{gathered} 128 \\ \mathrm{Te} \\ \text { telluriu } \\ \mathrm{m} \\ 52 \\ \hline \end{gathered}$ | $\begin{gathered} 127 \\ \mathbf{l} \\ \text { iodine } \\ 53 \end{gathered}$ | $\begin{gathered} 131 \\ \mathbf{X e} \\ \text { xenon } \\ 54 \end{gathered}$ |
| 133 Cs caesiu m 55 | 137 Ba
 barium 56 | $\begin{gathered} \hline 139 \\ \text { La* } \\ \text { lantha } \\ \text { num } \\ 57 \end{gathered}$ | $\begin{gathered} 178 \\ \text { Hf } \\ \text { hafniu } \\ \text { m } \\ 72 \end{gathered}$ | 181 Ta tantalu m 73 | $\begin{gathered} 184 \\ \text { w } \\ \text { tungst } \\ \text { en } \\ 74 \\ \hline \end{gathered}$ | 186 $\mathbf{R e}$ rheniu m 75 | $\begin{gathered} 190 \\ \text { Os } \\ \text { osmiu } \\ \text { m } \\ 76 \\ \hline \end{gathered}$ | $\begin{gathered} 192 \\ \text { Ir } \\ \text { iridium } \\ 77 \end{gathered}$ | 195 Pt platinu m 78 | $\begin{gathered} 197 \\ \text { Au } \\ \text { gold } \\ 79 \end{gathered}$ | 201
 Hg
 mercur
 y
 80 | $\begin{gathered} 204 \\ \text { TI } \\ \text { thalliu } \\ \mathrm{m} \\ 81 \end{gathered}$ | $\begin{gathered} 207 \\ \mathrm{~Pb} \\ \text { lead } \\ 82 \end{gathered}$ | 209
 Bi
 bismut
 h
 83 | $\begin{gathered} {[209]} \\ \text { Po } \\ \text { poloniu } \\ \mathrm{m} \\ 84 \end{gathered}$ | $\begin{gathered} {[210]} \\ \text { At } \\ \text { astatin } \\ \mathrm{e} \\ 85 \end{gathered}$ | $\begin{gathered} {[222]} \\ \mathbf{R n} \\ \text { radon } \\ 86 \end{gathered}$ |
| $\begin{gathered} {[223]} \\ \mathrm{Fr} \\ \text { franciu } \\ \mathrm{m} \\ 87 \\ \hline \end{gathered}$ | $\begin{gathered} {[226]} \\ \mathbf{R a} \\ \text { radium } \\ 88 \end{gathered}$ | $\begin{gathered} {[227]} \\ \text { Ac }^{*} \\ \text { actiniu } \\ \mathrm{m} \\ 89 \\ \hline \end{gathered}$ | [261]
 Rf
 rutherf ordium 104 | $\begin{gathered} \text { [262] } \\ \text { Db } \\ \text { dubniu } \\ \mathrm{m} \\ 105 \\ \hline \end{gathered}$ | $\begin{gathered} {[266]} \\ \mathrm{Sg} \\ \text { seabor } \\ \text { gium } \\ 106 \end{gathered}$ | $\begin{gathered} {[264]} \\ \text { Bh } \\ \text { bohriu } \\ \mathrm{m} \\ 107 \\ \hline \end{gathered}$ | $\begin{gathered} {[277]} \\ \text { Hs } \\ \text { hassiu } \\ \mathrm{m} \\ 108 \\ \hline \end{gathered}$ | $\begin{gathered} {[268]} \\ \mathrm{Mt} \\ \text { meitne } \\ \text { rium } \\ 109 \\ \hline \end{gathered}$ | [271]
 Ds darmst adtium 110 | $\begin{gathered} {[272]} \\ \mathbf{R g} \\ \text { roentg } \\ \text { enium } \\ 111 \\ \hline \end{gathered}$ | Eleme | ts with a | mic num not | ers 112
 y authe | 16 have cated | en rep | ed but |

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number

CONFIDENTIAL

Guidance for Examiners

Additional Guidance within any mark scheme takes precedence over the following guidance.

1. Mark strictly to the mark scheme.
2. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.
3. Accept any clear, unambiguous response which is correct, e.g. mis-spellings if phonetically correct (but check additional guidance).
4. Abbreviations, annotations and conventions used in the detailed mark scheme:
/ = alternative and acceptable answers for the same marking point
(1) = separates marking points
not/reject = answers which are not worthy of credit
ignore $\quad=$ statements which are irrelevant - applies to neutral answers
allowlaccept $=$ answers that can be accepted
(words) = words which are not essential to gain credit
words $\quad=$ underlined words must be present in answer to score a mark
ecf $\quad=$ error carried forward
AW/owtte = alternative wording
ORA = or reverse argument
E.g. mark scheme shows 'work done in lifting / (change in) gravitational potential energy' (1) work done $=0$ marks work done lifting = 1 mark change in potential energy $=0$ marks gravitational potential energy $=1$ mark
5. If a candidate alters his/her response, examiners should accept the alteration.
6. Crossed out answers should be considered only if no other response has been made. When marking crossed out responses, accept correct answers which are clear and unambiguous.
7. The list principle:

If a list of responses greater than the number requested is given, work through the list from the beginning. Award one mark for each correct response, ignore any neutral response, and deduct one mark for any incorrect response, e.g. one which has an error of science. If the number of incorrect responses is equal to or greater than the number of correct responses, no marks are awarded. A neutral response is correct but irrelevant to the question.
8. Marking method for tick boxes:

Always check the additional guidance.
If there is a set of boxes, some of which should be ticked and others left empty, then judge the entire set of boxes.
If there is at least one tick, ignore crosses. If there are no ticks, accept clear, unambiguous indications, e.g. shading or crosses.
Credit should be given for each box correctly ticked. If more boxes are ticked than there are correct answers, then deduct one mark for each additional tick. Candidates cannot score less than zero marks.
E.g. If a question requires candidates to identify a city in England, then in the boxes

Edinburgh	
Manchester	
Paris	
Southampton	

the second and fourth boxes should have ticks (or other clear indication of choice) and the first and third should be blank (or have indication of choice crossed out).

Edinburgh			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	
Manchester	\checkmark	\times	\checkmark	\checkmark	\checkmark				\checkmark	
Paris				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Southampton	\checkmark	\times		\checkmark		\checkmark	\checkmark		\checkmark	
Score:	2	2	1	1	1	1	0	0	0	NR

Question			Expected Answers	Marks	Rationale
2	a		2	1	If more than one response $=0$ marks Accept any other clear response eg. underline or
	b		64	1	If more than one response $=0$ marks Accept any other clear response eg. underline or
	c		Ruth	1	If more than one response $=0$ marks Accept any other clear response eg. underline or
	d		C	1	all correct for one mark
			Total	4	

| Question | | Expected Answers | Marks | Rationale |
| :---: | :---: | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | \mathbf{a} | For answers where there is no clear
 hierarchical response.
 [2 marks] The candidate shows
 understanding of the whole argument and
 covers both the necessary components.
 The answer is expressed clearly and
 logically.
 [1 mark] The candidate shows a partial
 understanding of the argument and covers
 only one of the necessary components. The
 answer is expressed clearly and logically. | 2 | Necessary components -
 the cells are unspecialised;
 so they can repair damaged tissues; |
| b | 8 cells | | | |
| c | Jemima
 Lucy | 1 | more than 2 responses $=0$ marks | |
| Accept any other clear response eg. underline or \checkmark | | | | |

Question			Expected Answers			Marks	Rationale
4	a	i	8			1	If more than one response = 0 marks
		ii	route A route B OR			1	all correct for one mark
	b		fat and ca	hydrate		1	Both correct = 1 mark Accept any order 'Hydrocarbon' is incorrect
			Total			3	

Question		Expected Answers	Marks		
$\mathbf{5}$	\mathbf{a}		MgBr_{2}		1

Question		Expected Answers				$\begin{gathered} \text { Marks } \\ \hline 3 \end{gathered}$	Rationale7 correct = 3 marks5 or 6 correct $=2$ marks3 or 4 correct $=1$ mark2 correct or less $=0$ marksaccept a clear response eg. X or shading etc.ignore X if combination of \checkmark and X usedif more than 7 ticks - deduct 1 mark for each additional tick
6	a	ions produced when ore melts ions present in solid ore ion in solid move to electrodes negative ions move towards anode metals are discharged positive ions move towards cathode ions in liquid move to the electrodes		\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark	\checkmark \checkmark \checkmark		
	b		Relative formula mass of $\mathrm{Al}_{2} \mathrm{O}_{3}=2 \times 27$ $3 \times 16=\underline{102}$, of $2 \mathrm{Al}=2 \times 27=\underline{54}$ [1] 102 tonnes of ore $=54$ tonnes of meta 100 tonnes of ore $=(54 / 102) \times 100(=53$ tonnes) [1]	al [1], 53		3	
			Total			6	

| Question | Expected Answers | Marks | |
| :---: | :---: | :--- | :--- | :--- |
| 7 | For answers where there is no clear
 hierarchical response.
 [2 marks] The candidate shows
 understanding of the whole argument and
 covers both the necessary components.
 The answer is expressed clearly and
 logically.
 [1 mark] The candidate shows a partial
 understanding of the argument and covers
 only one of the necessary components. The
 answer is expressed clearly and logically. | 2 | Necessary components -
 regular array of particles in two dimensions;
 nearest neighbours have opposite charges;
 e.g. |
| Total | 2 | | |

Question		Expected Answers	Marks	Rationale
$\mathbf{8}$		C	1	If more than one response $=0$ marks if no response on dotted line, look for a clear response on the list in the question eg. \checkmark, ring or shading

Question			Expected Answers	Marks	Rationale
9	a	i	For answers where there is no clear hierarchical response. [3 marks] The candidate shows a good understanding of the whole argument, and covers all the necessary components. The answer is expressed clearly and logically. [2 marks] The candidate shows a partial understanding of the argument and covers two of the necessary components. The answer is expressed clearly and logically. [1 mark] The candidate shows a limited understanding of the argument and covers only one of the necessary components. The answer may not be expressed in a logical sequence.	3	closing switch allows current / flow of charge; current passes through the filament; heats the filament causing it to glow NOT connects lamp to battery / allows voltage to lamp
	b		any three of the following, (1) each: - remove the resistor / connect the lamp directly to the battery - connect a wire in parallel with the resistor - increase the voltage / p.d. of the battery (NOT larger battery) - decrease the resistance of the resistor	3	
			Total	6	

Question		Expected Answers		Marks	Rationale
$\mathbf{1 1}$	\mathbf{a}		B	C	A
			2	B somewhere before $\mathrm{C}=1$ mark C somewhere before $\mathrm{A}=1 \mathrm{mark}$	
	\mathbf{b}	$6-(0.08 \times 45)$	1	If more than one response $=0$ marks Allow a clear response eg. X or shading etc.	
			Total	$\mathbf{3}$	

		Paper Total	42

[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

