RECOGNISING ACHIEVEMENT
F

TWENTY FIRST CENTURY SCIENCE
ADDITIONAL SCIENCE A
Unit 1 Modules B4 C4 P4 (Foundation Tier)
SAMPLE ASSESSMEMT MATERIAL
(from 2010 onwards)
Time: 40 minutes

Candidates answer on the question paper
Additional materials (enclosed):
None
Calculators may be used. Additional materials:

Pencil
Ruler (cm/mm)

Candidate
Forename

Candidate Surname

Centre Number

Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Do not write outside the box bordering each page.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S		
USE		
Qu.	Max.	Mark
1	2	
2	4	
3	5	
4	3	
5	4	
6	6	
7	4	
8	4	
9	5	
10	5	
TOTAL	42	

This document consists of $\mathbf{1 6}$ printed pages.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

speed $=$ distance travelled time taken
momentum $=$ mass \times velocity
change of momentum $=$ resultant force x time for which it acts
work done by a force = force x distance moved by the force
change in energy = work done
change in GPE $=$ weight x vertical height difference
kinetic energy $=1 / 2 \times$ mass $\times[\text { velocity }]^{2}$

Electric Circuits

resistance $=\frac{\text { voltage }}{\text { current }}$
$\frac{\text { Voltage across primary coil }}{\text { Voltage across secondary coil }}=\frac{\text { Number of turns in primary coil }}{\text { Number of turns in secondary coil }}$
energy transferred = power x time
power $=$ potential difference \times current
efficiency $=$ energy usefully transferred $\times 100 \%$
total energy supplied
The Wave Model of Radiation
wave speed $=$ frequency \times wavelength

Answer all questions.

1 Bobby watches a stage magician.
The magician throws a handful of powder into a flame. The flame turns green.
Bobby realises that the powder contains copper.
How does Bobby know the powder contains copper?
Put ticks (\checkmark) in the boxes next to the two best reasons.
It is a magic trick.

Many elements change the colour of the flame.

Stage magicians always use copper.

Copper conducts electricity.

An element always turns the flame the same colour.

Copper is cheap.

[^0]2 (a) Look at these diagrams of the Periodic Table.
Some elements are marked with an \mathbf{X}.
A

C
D

	XXXXXXXXXX					
	XXXXXXXXXX					
	XXXXXXXXXX					

(i) Which diagram, A, B, C or D, shows a group of elements?
answer
(ii) Which diagram, A, B, C or D, shows a period of elements?
answer
[1]
(b) Which two letters below represent non-metals?

answer
and
[2]
[Total: 4]

3 Jenny studies four elements $\mathrm{Li}, \mathrm{Na}, \mathrm{K}$ and Cs .
She finds this information in a book.

	boiling point in ${ }^{\circ} \mathrm{C}$
Li	1342
Na	883
K	760

(a) The book does not list data for the element Cs.

Suggest a value for the boiling point of Cs.
Give reasons for your answer.
boiling point $=$ \qquad ${ }^{\circ} \mathrm{C}$
\qquad
\qquad
\qquad
\qquad
(b) Jenny carefully adds some potassium to cold water.

Describe what she sees.
Include a word equation for the reaction.
\qquad
\qquad
\qquad
\qquad

4 Jenny fills in a table about the halogens at room temperature and pressure.
Use words from the lists below to complete the table.

solid	green
liquid	grey
gas	red/brown
	white
	yellow

name of element	state of element	colour of element
chlorine		
bromine		
iodine		

5 The diagram shows the forces acting on a helicopter in level flight.

(a) What is the direction of the resultant force on the helicopter?

Put a ring around the correct answer.
backwards
downwards
forwards
upwards
[1]
(b) What is the size of the resultant force on the helicopter?

Put a ring around the correct answer.
1 kN
2 kN
3 kN
5 kN
12 kN
[1]
(c) Which quantities will be increasing for the helicopter?

Put ticks (\checkmark) in the boxes next to the two correct answers.

6 Paul drives a taxi in town.

(a) A journey of 3000 m takes him 400 s .

Calculate the average speed for the journey.
Show your working.
(b) Here is a velocity-time graph for Paul's journey.

At what point in the journey is Paul moving at a steady top speed?
Put a ring around the answer.
A
B
C
D
E
F
[1]
(c) Paul wears a seatbelt. He brakes suddenly at traffic lights.

Explain how the seatbelt protects Paul.
\qquad
\qquad
\qquad
\qquad
\qquad

7 Julie drops a brick down a deep well.

The brick falls through the air until it hits the water.
(a) Finish the sentences. Choose words from this list.
gravitational potential energy
kinetic energy
mass
volume
weight
work
The brick is pulled down by its \qquad
As it falls, the brick loses \qquad
but gains
(b) The brick has a weight of 20 N . It falls for 4 s before it hits the water.

The momentum of the brick changes as it falls through the air.
How do you calculate the change in momentum?
Put a ring around the correct answer.
$\frac{20}{4}$
20×4
$\frac{4}{20}$
[1]
[Total: 4]

BLANK PAGE

Question 8 starts on page 12

PLEASE DO NOT WRITE ON THIS PAGE

8 Andrew draws a model to show osmosis.

$$
\begin{aligned}
& \text { = glucose molecule } \\
& \text { = water molecule } \\
& \text { I }=\text { partially permeable membrane }
\end{aligned}
$$

(a) What does side B in the model represent?

Put a tick (\checkmark) in the box next to the correct answer.
a concentrated solution \square
a dilute solution \square
pure water \square
(b) Why did Andrew include a partially permeable membrane in his model? Put a tick (\checkmark) in the box next to the correct answer.

To stop glucose molecules and water molecules from passing through. \square

To stop glucose molecules from passing through.

To stop water molecules from passing through.

(c) What happens to the water molecules?

Put a tick (\checkmark) in the box next to the correct answer.
Water molecules move mostly from side \mathbf{A} to side \mathbf{B}.

Water molecules move mostly from side \mathbf{B} to side \mathbf{A}.

Water molecules move equally between side \mathbf{A} and side \mathbf{B}.

Water molecules do not move between side \mathbf{A} and side \mathbf{B}.
(d) What will happen when Andrew adds four more glucose molecules to side \mathbf{B} in his model? Put a tick (\checkmark) in the box next to the correct answer.

Water molecules move mostly from side \mathbf{A} to side \mathbf{B}.

Water molecules move mostly from side \mathbf{B} to side \mathbf{A}.

Water molecules move equally between side \mathbf{A} and side \mathbf{B}.

Water molecules do not move between side \mathbf{A} and side \mathbf{B}.

[1]

9 This question is about enzymes.
(a) What are enzymes made of?

Put a ring around the correct answer.
carbohydrates lipids proteins [1]
(b) Enzymes can speed up the breakdown of molecules.

Which of the following statements are true and which are false?
Write true or false in the box next to each statement.

Enzymes can make reactions go faster.
true
or false

Enzymes will only work in test tubes.

Enzymes stop working at very high temperatures.

Enzymes work best at one particular temperature.

(c) Enzymes can speed up the breakdown of molecules. This can be explained with the lock-and-key model.

Describe the lock-and-key model for enzyme action.
\qquad
\qquad
\qquad
\qquad

10 This question is about the kidneys.
(a) Drinking a glass of water increases the amount of water in your body.
(i) Here are some processes in the body.

Which one increases the amount of water in your body?
Put a ring around the answer.
dehydration exhalation inspiration respiration
(ii) Your body can lose water by excreting urine.

Describe two other ways in which your body can lose water.
1 \qquad
2
(b) Drinking large amounts of alcoholic drinks can cause dehydration.

Why does this happen?
Put a tick (\checkmark) in the box next to the correct answer.
The kidneys stop working totally.

The kidneys produce more urine.

The kidneys produce less urine.

(c) If someone uses the drug ecstasy they produce small amounts of very strong urine.

Draw one straight line from the correct change in the volume of urine to the correct change in its concentration caused by the drug ecstasy.

The Periodic Table of the Elements

12		Key										3	4	5	6	7	$\begin{gathered} 0 \\ \hline \begin{array}{c} 4 \\ \text { He } \\ \text { nelium } \\ 2 \end{array} \end{gathered}$				
			$\begin{gathered} 1 \\ \begin{array}{c} \text { hydrogen } \\ 1 \end{array} \end{gathered}$																		
$\begin{gathered} 7 \\ \mathbf{L i} \\ \text { lithium } \\ 3 \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{Be} \\ \text { beryllium } \\ 4 \end{gathered}$						relat at atomic	atomic mic sym name proton)	mass ol umber							$\begin{gathered} 11 \\ \mathbf{B} \\ \text { boron } \\ 5 \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{C} \\ \text { carbon } \\ 6 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{N} \\ \text { nitrogen } \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ 0 \\ \text { oxygen } \\ 8 \end{gathered}$	$\begin{gathered} 19 \\ \mathbf{F} \\ \text { fluorine } \\ 9 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ne} \\ \text { neon } \\ 10 \end{gathered}$
$\begin{gathered} 23 \\ \mathrm{Na} \\ \text { sodium } \\ 11 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{M g} \\ \text { magnesium } \\ 12 \end{gathered}$											$\begin{gathered} 27 \\ \mathbf{A l} \\ \text { aluminium } \\ 13 \end{gathered}$	$\begin{gathered} 28 \\ \mathrm{Si} \\ \text { silicon } \\ 14 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{P} \\ \text { phosphorus } \\ 15 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{S} \\ \text { sulfur } \\ 16 \end{gathered}$	$\begin{gathered} 35.5 \\ \text { Cl } \\ \text { chlorine } \\ 17 \end{gathered}$	$\begin{gathered} 40 \\ \text { argon } \\ \text { argon } \end{gathered}$				
$\begin{gathered} 39 \\ \mathbf{K} \\ \text { potassium } \\ 19 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{C a} \\ \text { calcium } \\ 20 \end{gathered}$	$\begin{gathered} 45 \\ \text { Sc } \\ \text { scandium } \\ 21 \end{gathered}$	$\begin{gathered} 48 \\ \mathrm{Ti} \\ \text { titanium } \\ 22 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{V} \\ \text { vanadium } \\ 23 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Cr} \\ \text { chromium } \\ 24 \end{gathered}$	55 $\mathbf{M n}$ manganese 25	$\begin{aligned} & 56 \\ & \text { Fe } \\ & \text { iron } \\ & 26 \end{aligned}$	$\begin{gathered} 59 \\ \text { Co } \\ \text { cobalt } \\ 27 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Ni} \\ \text { nickel } \\ 28 \end{gathered}$	$\begin{gathered} 63.5 \\ \text { Cu } \\ \text { copper } \\ 29 \end{gathered}$	$\begin{aligned} & 65 \\ & \text { Zn } \\ & \text { zinc } \\ & 30 \end{aligned}$	$\begin{gathered} 70 \\ \text { Ga } \\ \text { gallium } \\ 31 \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{G e} \\ \text { germanium } \\ 32 \end{gathered}$	75 As arsenic 33	$\begin{gathered} 79 \\ \text { Se } \\ \text { selenium } \\ 34 \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Br} \\ \text { bromine } \\ 35 \end{gathered}$	$\begin{gathered} 84 \\ \mathbf{K r} \\ \text { krypton } \\ 36 \end{gathered}$				
$\begin{gathered} 85 \\ \mathbf{R b} \\ \text { rubidium } \\ 37 \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Sr} \\ \text { strontium } \\ 38 \end{gathered}$	$\begin{gathered} 89 \\ \mathbf{Y} \\ \text { y trium } \\ 39 \end{gathered}$	$\begin{gathered} 91 \\ \text { Zr } \\ \text { zirconium } \\ 40 \end{gathered}$	$\begin{gathered} 93 \\ \mathrm{Nb} \\ \text { niobium } \\ 41 \end{gathered}$	96 $\mathbf{M o}$ molybdenum 42	[98] Tc technetium 43	$\begin{gathered} 101 \\ \mathrm{Ru} \\ \text { ruthenium } \\ 44 \end{gathered}$	$\begin{gathered} 103 \\ \text { Rh } \\ \text { rhodium } \\ 45 \end{gathered}$	$\begin{gathered} 106 \\ \text { Pd } \\ \text { palladium } \\ 46 \end{gathered}$	$\begin{gathered} 108 \\ \text { Ag } \\ \text { silver } \\ 47 \end{gathered}$	$\begin{gathered} 112 \\ \text { Cd } \\ \text { cadmium } \\ 48 \end{gathered}$	$\begin{gathered} 115 \\ \text { In } \\ \text { indium } \\ 49 \end{gathered}$	$\begin{aligned} & 119 \\ & \text { Sn } \\ & \text { tin } \\ & 50 \end{aligned}$	$\begin{gathered} 122 \\ \text { Sb } \\ \text { antimony } \\ 51 \end{gathered}$	$\begin{gathered} 128 \\ \mathrm{Te} \\ \text { tellurium } \\ 52 \end{gathered}$	$\begin{gathered} 127 \\ \text { I } \\ \text { iodine } \\ 53 \end{gathered}$	$\begin{gathered} 131 \\ \text { Xe } \\ \text { xenon } \\ 54 \end{gathered}$				
$\begin{gathered} 133 \\ \text { Cs } \\ \text { caesium } \\ 55 \end{gathered}$	$\begin{gathered} 137 \\ \text { Ba } \\ \text { barium } \\ 56 \end{gathered}$	$\begin{gathered} 139 \\ \text { La* } \\ \text { lanthanum } \\ 57 \end{gathered}$	$\begin{gathered} 178 \\ \mathbf{H f} \\ \text { Hafnium } \\ 72 \end{gathered}$	$\begin{gathered} 181 \\ \text { Ta } \\ \text { tantalum } \\ 73 \end{gathered}$	$\begin{gathered} 184 \\ \mathbf{W} \\ \text { Wungsten } \\ 74 \end{gathered}$	$\begin{gathered} 186 \\ \text { Re } \\ \text { rhenium } \\ 75 \end{gathered}$	$\begin{gathered} 190 \\ \text { Os } \\ \text { osmium } \\ 76 \end{gathered}$	$\begin{gathered} 192 \\ \text { Ir } \\ \text { iridium } \\ 77 \end{gathered}$	$\begin{gathered} 195 \\ \text { Pt } \\ \text { platinum } \\ 78 \end{gathered}$	$\begin{gathered} 197 \\ \mathrm{Au} \\ \text { gold } \\ 79 \end{gathered}$	$\begin{gathered} 201 \\ \mathbf{H g} \\ \text { mercury } \\ 80 \end{gathered}$	$\begin{gathered} 204 \\ \text { Tl } \\ \text { thallium } \\ 81 \end{gathered}$	$\begin{gathered} 207 \\ \text { Pb } \\ \text { lead } \\ 82 \end{gathered}$	$\begin{gathered} 209 \\ \text { Bi } \\ \text { bismuth } \\ 83 \end{gathered}$	$\begin{gathered} {[209]} \\ \text { Po } \\ \text { polonium } \\ 84 \end{gathered}$	$\begin{gathered} {[210]} \\ \text { At } \\ \text { Atatine } \\ 85 \end{gathered}$	$\begin{gathered} {[222]} \\ \text { Rn } \\ \text { radon } \\ 86 \end{gathered}$				
$\begin{gathered} {[223]} \\ \mathrm{Fr} \\ \text { francium } \\ 87 \end{gathered}$	$\begin{gathered} {[226]} \\ \mathbf{R a} \\ \text { radium } \\ 88 \end{gathered}$	$\begin{gathered} {[227]} \\ \mathbf{A c c}^{\mathbf{A c t i n i u m ~}} \\ 89 \end{gathered}$	$\begin{gathered} {[261]} \\ \mathbf{R f} \\ \text { rutheroforium } \\ 104 \end{gathered}$	$\begin{gathered} {[262]} \\ \text { Db } \\ \text { dubnium } \\ 105 \end{gathered}$	$[266]$ $\mathbf{S g}$ seaborgium 106	$\begin{gathered} {[264]} \\ \text { Bh } \\ \text { bohrium } \\ 107 \end{gathered}$	$\begin{gathered} {[277]} \\ \text { Hs } \\ \text { hassium } \\ 108 \end{gathered}$	$\begin{gathered} {[268]} \\ \mathrm{Mt} \\ \text { meitrerium } \\ 109 \end{gathered}$	$\begin{gathered} {[271]} \\ \text { Ds } \\ \text { darmstadium } \\ 110 \end{gathered}$	$\begin{gathered} \hline[272] \\ \mathbf{R g} \\ \text { roentgeniu } \\ 111 \end{gathered}$	Elements with atomic numbers 112-116 have been reported but not fully authenticated										

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number

CONFIDENTIAL

GCSE Unit
MARK SCHEME
SAMPLE ASSESSMENT MATERIAL
(from 2010 onwards)
Additional Science A (J631)
Modules B4, C4 and P4
Foundation Tier
A215/01
Maximum Mark: 42

Guidance for Examiners

> Additional Guidance within any mark scheme takes precedence over the following guidance.

1. Mark strictly to the mark scheme.
2. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.
3. Accept any clear, unambiguous response which is correct, e.g. mis-spellings if phonetically correct (but check additional guidance).
4. Abbreviations, annotations and conventions used in the detailed mark scheme:
l = alternative and acceptable answers for the same marking point
(1) $\quad=$ separates marking points
not/reject = answers which are not worthy of credit
ignore $\quad=$ statements which are irrelevant - applies to neutral answers
allowlaccept $=$ answers that can be accepted
(words) = words which are not essential to gain credit
words $\quad=$ underlined words must be present in answer to score a mark
ecf = error carried forward
AW/owtte = alternative wording
ORA = or reverse argument
E.g. mark scheme shows 'work done in lifting / (change in) gravitational potential energy' (1)
work done = 0 marks
work done lifting = 1 mark
change in potential energy $=0$ marks
gravitational potential energy = 1 mark
5. If a candidate alters his/her response, examiners should accept the alteration.
6. Crossed out answers should be considered only if no other response has been made. When marking crossed out responses, accept correct answers which are clear and unambiguous.
7. The list principle:

If a list of responses greater than the number requested is given, work through the list from the beginning. Award one mark for each correct response, ignore any neutral response, and deduct one mark for any incorrect response, e.g. one which has an error of science. If the number of incorrect responses is equal to or greater than the number of correct responses, no marks are awarded. A neutral response is correct but irrelevant to the question.
8. Marking method for tick boxes:

Always check the additional guidance.
If there is a set of boxes, some of which should be ticked and others left empty, then judge the entire set of boxes.
If there is at least one tick, ignore crosses. If there are no ticks, accept clear, unambiguous indications, e.g. shading or crosses.
Credit should be given for each box correctly ticked. If more boxes are ticked than there are correct answers, then deduct one mark for each additional tick. Candidates cannot score less than zero marks.
E.g. If a question requires candidates to identify a city in England, then in the boxes

Edinburgh	
Manchester	
Paris	
Southampton	

the second and fourth boxes should have ticks (or other clear indication of choice) and the first and third should be blank (or have indication of choice crossed out).

Edinburgh			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	
Manchester	\checkmark	\times	\checkmark	\checkmark	\checkmark				\checkmark	
Paris				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Southampton	\checkmark	\times		\checkmark		\checkmark	\checkmark		\checkmark	
Score:	2	2	1	1	1	1	0	0	0	NR

Question			Expected Answers	Marks	Rationale
2	a	i	B (1)	1	
		ii	A (1)	1	
	b		$\begin{aligned} & \mathrm{G}(1) \\ & \mathrm{H}(1) \end{aligned}$	2	
			Total	4	

| Question | Expected Answers | Marks | Rationale | |
| :---: | :---: | :--- | :--- | :---: | :---: |
| $\mathbf{3}$ | \mathbf{a} | \bullet answer between 740 and 640
 \bullet Cs below K (in the table)
 \bullet boiling point decreases as you go down
 the table | 3 | |
| b | any two of the following for [1]
 \bullet fizzes
 \bullet purple flame
 \bullet melts
 \bullet moves around on surface
 potassium + water = potassium hydroxide +
 hydrogen [1] | 2 | | |
| Total | | | | |

Question		Expected Answers			Marks	Rationale
4			state	colour	3	
		chlorine bromine iodine	gas liquid solid	green red/brown grey		2 or 3 correct (1) for red/brown allow one or both from the pair
		Total			3	

| Question | | Expected Answers | Marks | Rationale |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathbf{6}$ | \mathbf{a} | correct answer of 7.5 m/s for [2]
 $3000 / 400$ for [1] if answer incorrect | 2 | |
| | \mathbf{b} | C | 3 correct (2)
 1 or 2 correct (1) | |
| \mathbf{c} | any three of the following, [1] each
 - applies a force to stop him
 - stops him slowly
 - stretches to absorb his energy
 - reduces his momentum
 stops him hitting the steering wheel /
 dashboard | 3 | | |
| Total | | | | |

Question		Expected Answers	Marks	Rationale	
$\mathbf{7}$	\mathbf{a}	weight (1) gravitational potential energy (1) kinetic energy (1)	3	allow GPE for gravitational potential energy	
	\mathbf{b}		$\frac{20}{4} \quad 20 \times 4$	$\frac{4}{20}$	1

			Expected Answers		Marks	Rationale
9	Question		proteins (1)		1	
	b		can make reactions go faster will only work in test tubes stop working at very high temp work best at one particular temp	true false true true	2	4 correct (2) 3 correct (1)
	c		molecule is the key, enzyme is the lock [1] key must have the right shape to fit the lock [1]		2	
			Total		5	

[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

