

F

GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE ADDITIONAL SCIENCE A

A215/01

Unit 1: Modules B4 C4 P4 (Foundation Tier)

Candidates answer on the question paper Calculators may be used

OCR Supplied Materials:

None

Other Materials Required:

- Pencil
- Ruler (cm/mm)

Wednesday 20 May 2009 Afternoon

Duration: 40 minutes

Candidate Forename				Candidate Surname			
Centre Number	er			Candidate N	umber		

MODIFIED LANGUAGE

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Write your answer to each question in the space provided, however additional paper may be used if necessary.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page 2.
- The Periodic Table is printed on the back page.
- This document consists of 20 pages. Any blank pages are indicated.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

$$speed = \frac{distance \ travelled}{time \ taken}$$

$$momentum = mass \times velocity$$

$$change \ of \ momentum = resultant \ force \times time \ for \ which \ it \ acts$$

$$work \ done \ by \ a \ force = force \times distance \ moved \ by \ the \ force$$

$$change \ in \ energy = work \ done$$

$$change \ in \ GPE = weight \times vertical \ height \ difference$$

Electric Circuits

resistance =
$$\frac{\text{voltage}}{\text{current}}$$

$$\frac{V_{\rm p}}{V_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}}$$

energy transferred = power × time

power = potential difference × current

kinetic energy = $\frac{1}{2}$ × mass × [velocity]²

efficiency =
$$\frac{\text{energy usefully transferred}}{\text{total energy supplied}} \times 100\%$$

The Wave Model of Radiation

wave speed = frequency × wavelength

3 BLANK PAGE

Question 1 starts on page 4.

PLEASE DO NOT WRITE ON THIS PAGE

Answer **all** the questions.

1 Ben is on holiday. The weather is very hot and dry.

(a)	What happens to Ben's core bo	ody temperature as he	sits in the sun?	
	Put a tick (✓) in the box next to	the correct answer.		
	His core body temperature	e decreases.		
	His core body temperature	e increases.		
	His core body temperature	e remains steady.		[1]
(b)	Ben's body has control systems	s to respond to changes	s in temperature.	
	Draw a straight line from each	response to the correc	t part of his control system.	
	Draw a straight line from each response	response to the correc	t part of his control system. part of his control system	
	G	response to the correc	•	
	response The change in temperature is	response to the correc	part of his control system	
	response The change in temperature is detected by his skin. His sweat glands produce	response to the correc	part of his control system processing centre	

(c)	Ben sits in	the sun	for too	long and	d develops	heat stroke.
-----	-------------	---------	---------	----------	------------	--------------

/i\	What are	the symptoms	of hoat	ctroko2
(1)	vvnat are	the symbloms	oi neat	Stroke?

Put a (ring) around each of the **two** correct answers.

hot dry skin	rapid pulse rate	shivering	
slow pulse rate	sweating	vomiting	[2]

(ii) These statements describe how heat stroke may develop.

They are in the wrong order.

Put the letters A, B, C, D and E in the boxes in the right order.

One has been done for you.

- A sweating is reduced
- **B** sweating increases
- **C** the body is exposed to high temperatures
- **D** dehydration develops
- **E** body temperature increases above normal

[2]

[Total: 7]

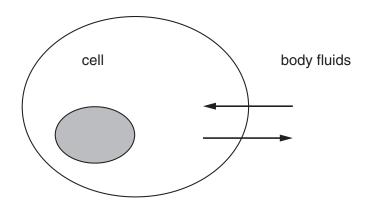
2	The kidneys help	to maintain a	constant internal	environment	in the hady	,
_	THE KIUHEVS HEID	lu illallilalli a	i constant internal	environnent	III liile boav	/.

(a) What is the name of this process?

Put a (ring) around the correct answer.

homeostasis	hypothalamus	hypothermia	
			[1]

(b) The kidneys filter chemicals from the blood and reabsorb some of them.


Complete the table.

Put ticks (\checkmark) in the correct boxes to show whether **all**, **some** or **none** of each chemical is reabsorbed.

chemical	all reabsorbed	some reabsorbed	none reabsorbed
water			
sugar			
salt			
urea			

[4]

(c) The diagram shows a cell surrounded by body fluids.

The arrows show movement of chemicals between cells and body fluids.

(i)	Name one gas that moves into or out of cells by diffusion.	

	[1]
--	-----

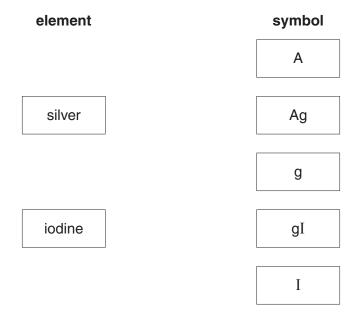
(ii) What is the name of the process that describes the overall diffusion of water through a cell membrane?

[41
 [1]

[Total: 7]

7 BLANK PAGE

Question 3 starts on page 8.


PLEASE DO NOT WRITE ON THIS PAGE

3 Sam's sunglasses go darker when sunlight gets brighter.

This is caused by silver iodide in the glass.

(a) The formula of silver iodide is AgI.

Draw a straight line from each **element** in silver iodide to its **symbol**.

(b) The sunglasses go dark in bright light.

Silver iodide breaks apart to form silver and iodine.

(i) Fill in the boxes to make a word equation for this reaction.

[1]

[1]

(ii) Silver iodide makes silver atoms and iodine atoms in this reaction.

Put a tick (✓) in the box next to the equation for this reaction.

$$\begin{array}{c} \operatorname{AgI} \longrightarrow \operatorname{Ag} + \operatorname{I} \\ \\ \operatorname{2AgI} \longrightarrow \operatorname{2Ag} + \operatorname{I}_2 \\ \\ \operatorname{Ag} + \operatorname{I} \longrightarrow \operatorname{AgI} \\ \\ \operatorname{AgI} \longrightarrow \operatorname{Ag}^+ + \operatorname{I}^- \end{array}$$

(c)	An	iodine atom has 53 p	rotons in i	its nucleu	IS.			
(-)		iodine atom has a re						
	(i)	How many electron						
		Put a (ring) around	the correc	t answer				
			53	74	127	180		[1]
	(ii)	lodine is in group 7	of the Per	iodic Tab	le and it fo	rms iodid	e ions.	
		How does an iodine	atom forr	n an iodi	de ion?			
		Put a tick (✓) in the	box next	to the co	rect answ	<u>ə</u> r		
					root anow	J.,		
		It gains 1 elect	ron.					
		It gains 7 elect	rons.					
		It loses 1 elect	ron.					
		It loses 7 elect	rons.					F41
(d)	lodi	ine is similar to brom	ine.					[1]
	Bro	mine forms molecule	s.					
	Put	a (ring) around the f	ormula of	a bromin	e molecule) .		
			Br	Br ₂	Br ₃	Br ₇		
								[1]
								[Total: 6]

4 NASA plans to send a mobile laboratory to the surface of Mars.

One idea is to use a laser to find out what elements are in Martian rocks.

The laser heats a rock until it vaporises.

The vapour gives out light.

The mobile laboratory then identifies the elements present.

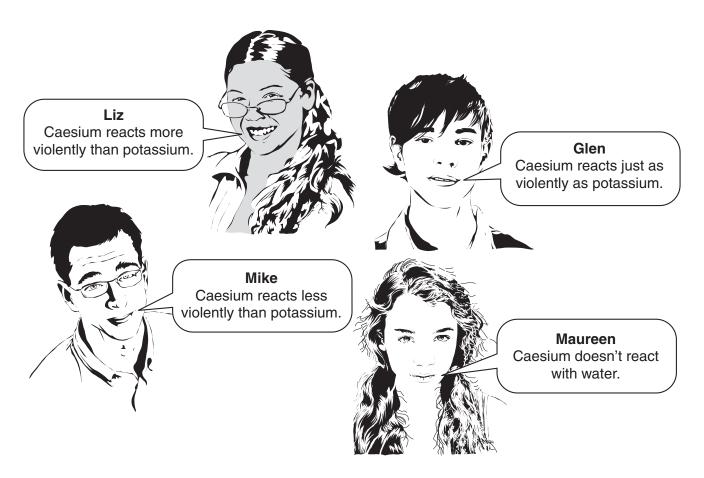
(a) What is the best way of identifying the elements present in the rock?Put a tick (✓) in the box next to the best answer.

dissolve the rock	
photograph the rock pieces	
study the spectrum of the light	
weigh the rock	

(b) Sodium chloride and potassium chloride have been found on Mars.

Draw a straight line from each **compound** to its **formula**.

compound	formula
	KC1
sodium chloride	NaCl ₂
	NaC1
	PCl ₃
potassium chloride	PoCl
	SCI

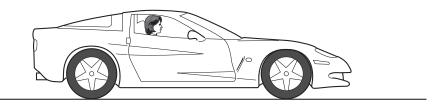

[2]

[Total: 3]

FOL	assium, rubidium and ca	esiam are in grou	p . oo . ooa.o		
(a)	Put a tick (✓) in the box	next to the corre	ct statement abou	t caesium.	
	Caesium is				
	a halogen.				
	a metal.				
	a coloured gas.				
	a bleach.				[1]
(b)	Look at the symbols be	low.			
	Put a ring around each	h of the two syml	ools of elements in	group 1.	
	Ве	La Li	Mg Na	Pt	
					[2]
(c)			easy to melt.		[2]
(c)	Potassium, rubidium an		easy to melt.		[2]
(c)			easy to melt. melting point		[2]
(c)		melting points.			[2]
(c)		melting points.	melting point		[2]
(c)		element potassium	melting point		[2]
(c)		element potassium rubidium caesium	melting point 63°C 29°C		[2]
(c)	Here are some of their	element potassium rubidium caesium	melting point 63°C 29°C		[2]
(c)	Here are some of their	element potassium rubidium caesium melting point of the potassium	melting point 63°C 29°C	78°C	[2]

(d) Potassium reacts violently with water.

Some students are asked how caesium reacts with water.



Who gave the **best** answer?

answer[1]

[Total: 5]

6 Sylvia drives her car along a horizontal road at a constant speed of 12 m/s.

(a) Sylvia has a mass of 65 kg.

How is her kinetic energy calculated?

Put a (ring) around the correct answer.

 $65 \times 12J$ $0.5 \times 65 \times 12 \times 12J$ $0.5 \times 65 \times 12J$ $0.5 \times 65 \times 12 \times 2J$

[1]

(b) Put a (ring) around the correct word to complete these sentences.

Friction is a type of **energy force power**.

The car moves at a steady speed against friction.

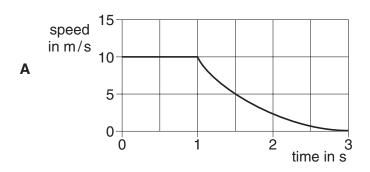
The kinetic energy of the car decreases increases stays the same.

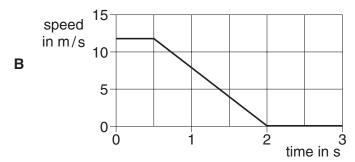
This is because the engine of the car is able to do **energy power work** on the car.

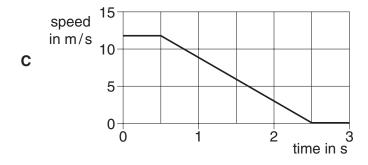
[1]

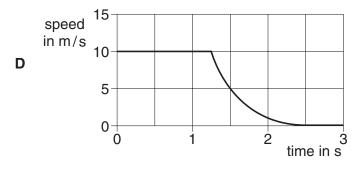
(c) The wheels apply a backwards force of 500 N on the road when the car is moving at a constant speed of 12 m/s.

How much work do the wheels do on the car when it moves a distance of 10 m?

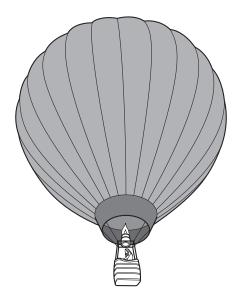

Put a (ring) around the correct answer.

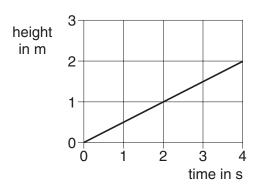

120J 500J 5000J 6000J


(d) Sylvia spots a child in the road ahead and stops the car.


Her speed drops steadily from 12 m/s to 0 m/s in 2 s.

Which of these speed-time graphs, A, B, C or D, shows this?




answer[1]

[Total: 4]

7 Serena goes up in a hot air balloon.

(a) The graph shows how the height of the balloon changes with time.

Which of the calculations below shows the speed of the balloon?

Put a (ring) around the correct answer.

$$\frac{4.0}{2.0} = 2.0 \,\text{m/s}$$
 $2.0 \times 4.0 = 8.0 \,\text{m/s}$ $\frac{2.0}{4.0} = 0.5 \,\text{m/s}$ [1]

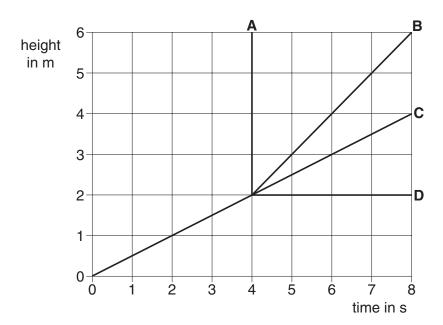
(b) Two forces act on the balloon as it moves up.

Its weight acts downwards, and the air around it pushes it up.

Why does the balloon move up at a **constant** speed?

Put a tick (\checkmark) in the box next to the correct reason.

the upwards push is less than the weight

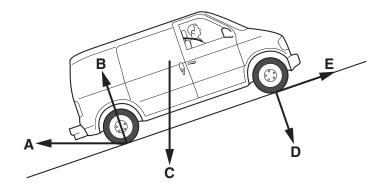

the upwards push is bigger than the weight

the upwards push is the same size as the weight

(c) After 4 seconds Serena releases a sandbag.

This suddenly increases the speed of the balloon.

Which of the lines, A, B, C or D, shows the new, steady speed of the balloon?


correct line[1]

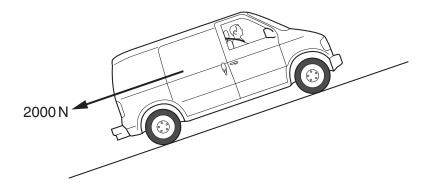
(d) Complete the sentences.

Choose words from the list.

	falling	gravitational potential	heating	kinetic	
As the	sandbag falls	through the air it loses		energy.	
It spee	eds up, gaining	J	energy.		
Air res	sistance results	s in the loss of some energy by	<i>'</i>		[2]
				[Total:	: 5]

8 Alan parks his van on a hill.

(a) Five possible force arrows are shown on the diagram.


Here are three descriptions of forces acting on the van and the road.

Choose the **best** force arrow to show each force.

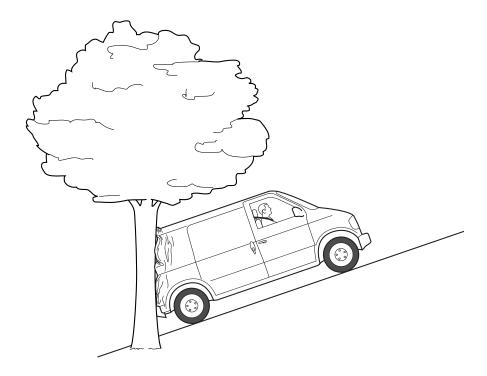
Enter A, B, C, D or E next to each description.

The weight of the van.	
The reaction of the road on the van.	
The friction on the van from the road.	

(b) The brakes fail and the van rolls back down the hill.

The resultant force pulling the van down the hill is 2000 N.

How should Alan calculate the change in momentum of the van after 10 seconds?


Put a (ring) around the correct calculation.

$$\frac{2000}{10} \, \text{kg m/s}$$
 $2000 \times 10 \, \text{kg m/s}$ $\frac{10}{2000} \, \text{kg m/s}$

[1]

[3]

(c) The van hits a tree and stops.

Alan is unhurt because the back of the van crumples.

Put a tick (✓) in the box next to the reason why Alan is unhurt.

The crumpling reduces Alan's momentum slowly.	
The crumpling reduces Alan's momentum quickly.	
Alan's seatbelt reduces his momentum quickly.	

[1]

[Total: 5]

END OF QUESTION PAPER

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

 $For queries \ or \ further \ information \ please \ contact \ the \ Copyright \ Team, \ First \ Floor, 9 \ Hills \ Road, \ Cambridge \ CB2 \ 1PB.$

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2009

The Periodic Table of the Elements

0 4 H helium	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	ıt fully
_	19 F fluorine 9	35.5 Cl chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but no
9	16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ve been repo
2	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112-116 hav authenticated
4	12 C carbon 6	28 Si siticon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82	mic numbers a
м	11 B boron 5	27 Al aluminium 13	70 Ga gallium 31	115 In indium 49	204 Tl thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Eleme
			63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium 111
			59 Ni nicket 28	106 Pd palladium 46	195 Pt platinum 78	[271] Ds darmstadtium 110
			59 Co cobalt 27	103 Rh rhodium 45	192 	[268] Mt meitnerium 109
T hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
	_		55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
	mass ool		52 Cr chromium 24	96 Mo motybdenum 42	184 W tungsten 74	Sg seaborgium 106
2	relative atomic mass atomic symbol atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
	relati atc atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf nutherfordium 104
			45 Sc scandium 21	89 Y yttrium 39	139 La* tanthanum 57	[227] Ac* actinium 89
2	9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
-	7 Li Utthium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.