	GENER TWEN ADDIT	AL CERTIFICA TY FIRST CEN IONAL SCIEN	TE OF SEC ITURY SCI CE A	ONDAR ENCE	Y EDUCATIO	N	A2	16/0	2
	Unit 2 I WEDN	Modules B5 C5 I ESDAY 18 JUI	⊃5 (Higher ⁻ NE 2008	Tier)			Time: 4	Afternoo 0 minuto	on es
	Candida Addition None	tes answer on the nal materials (eno	question pap closed):	oer.					
	Calculate Addition	ors may be used. nal materials: Pe R	encil uler (cm/mm))					
	Candidate Forename				Candidate Surname				
	Centre Number				Candidate Number				
11 •	NSTRUCTIO Write you Number	NS TO CANDIDA ur name in capital in the boxes abov	TES letters, your (e.	Centre N	umber and Car	ndidate	FOR EX	AMINE	۲'S US
•	Use blue Read ea	or black ink. Pend ch question carefu	cil may be use ully and make	ed for gra sure tha	phs and diagra t you know wha	ms only. at you	Qu.	Max	Mark
•	have to c Answer a	lo before starting all the questions.	your answer.				1	5	
•	Do not v Write you	rite in the bar coo ur answer to each	les. question in th	he space	provided.		2	5	
11			TES				3	4	
•	The num	ber of marks for e	ach question	is given	in brackets []	at the end	4	4	
•	of each of The total	number of marks	for this pape	r is 42 .			5	7	
•	A list of p The Peri	ohysics equations odic Table is printe	is printed on ed on the bac	page two k page.).		6	3	
							7	4	
							8	5	
								_	
							9	5	

This document consists of **18** printed pages and **2** blank pages.

SPA (SJF4659/CGW) T44370/5

© OCR 2008 [D/103/3775]

[Turn over

2

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

speed = $\frac{\text{distance travelled}}{\text{time taken}}$

momentum = mass × velocity
change of momentum = resultant force × time for which it acts
work done by a force = force × distance moved by the force
change in energy = work done
change in GPE = weight × vertical height difference

kinetic energy = $\frac{1}{2}$ × mass × [velocity]²

Electric Circuits

resistance = $\frac{\text{voltage}}{\text{current}}$

$$\frac{V_{\rm p}}{V_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}}$$

energy transferred = power × time power = potential difference × current efficiency = $\frac{\text{energy usefully transferred}}{\text{total energy supplied}} \times 100\%$

The Wave Model of Radiation

wave speed = frequency \times wavelength

3 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Question 1 starts on page 4

Answer all the questions.

1 This baby girl has just been born.

She is part of the human life cycle.

(d) One of the stages in the human life cycle is the formation of a zygote.

Put ticks (\checkmark) in the boxes to show if the statements about the zygote are **true** or **false**.

The zygote contains	true	false
a unique combination of chromosomes.		
a set of chromosomes from each parent.		
only chromosomes from the mother.		
twice the number of chromosomes found in the sperm.		
half the number of chromosomes found in the egg.		

[2]

[Total: 5]

2 This question is about genetic engineering.

Bacteria have been modified by scientists so that they produce insulin.

These bacteria are grown in fermenters.

(a) Complete the following sentences.

Choose words from the list.

	amino acids	bases	fatty acids	proteins	sugars	
	Bacteria that ha	ve not been mod	ified cannot produ	uce insulin. This is	because their D	NA does
	not have the cor	rect sequence of				
	Human DNA is a	added to the bact	eria so that they	make insulin by p	utting the	
		i	n the correct orde	er.		[2]
(b)	Most human cel	ls cannot produce	e insulin.			
	What is the reas	on for this?				
	Put a tick (\checkmark) in	the box next to th	ne correct answer			
	Human cell	s must remain ur	nspecialised to pro	oduce insulin.		
	Different ce	lls in the body co	ntain different ge	nes.		
	Some gene	s are not active i	n different human	cells.		
	All cells in t	he body contain	the same genes.			[1]

(c) It is now possible to create human tissue cultures using embryonic stem cells.

The cultures can be used to make insulin commercially.

This technique is successful for a number of reasons.

Put ticks (\checkmark) in the boxes to show if each reason is **true** or **false**.

reason	true	false
Embryonic stem cells are unspecialised.		
Embryonic stem cells grow rapidly.		
Some of the genes in the embryonic stem cells are switched on by the process.		
Genes coding for the production of insulin are added to the embryonic stem cells.		

[2]

[Total: 5]

- **3** Peter is studying the growth of plants.
 - (a) He examines the tissues inside a plant shoot and finds the meristem.

What is the function of the meristem?

Put a tick (\checkmark) in the box next to the correct answer.

production of cells	
site of photosynthesis	
storage of food	
transport of water	

[1]

(b) He then does an experiment to show the link between **auxin** and shoot growth.

He puts two young plants in a box for 3 days.

Look at the diagram.

Auxin is produced at the tip of the plant shoots.

What is the distribution of auxin in the shoots at the end of the experiment?

Put a tick (\checkmark) in the correct box for shoots **A** and **B**.

shoot	more auxin in the side nearest the light	more auxin in the side away from the light	auxin in equal amounts on both sides
A			
В			

[2]

(c) Peter takes a cutting from another plant and dips the cut surface in rooting powder containing auxins.

Complete the sentences.

Choose words from the list.

	enzyme	fertiliser	hormone
ina	active	specialised	unspecialised
Auxins are a	type of plant		
Auxins can ch	nange	C	ells into xylem and phloem cells.

[Total: 4]

[1]

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

4 Tony draws a diagram of an oxygen cycle.

(a) Most of these stages take place fairly quickly.

Which stage, A, B, C, D, E or F, is most likely to keep the oxygen out of the air for millions of years?

- **5** We dig millions of tonnes of rock from the surface of the Earth.
 - (a) What is this part of the Earth called?

Put a (ring) around the correct answer.

		atmosphere	biosphere	hyd	rosphere		
		lithos	phere t	roposphere			[1]
(b)	Sometir	mes compounds from	this rock are melted	d and then eled	ctrolysed to pr	oduce a	metal.
	Put a (electrol	ring) around each o ysed to produce meta	f the two of these ls.	e substances	which, when	melted,	can be
		aluminium oxide	carboh	ydrate	DNA		
		protein	silicon dioxide	sodiu	m chloride		[2]
(c)	Other c	ompounds can be hea	ated with carbon to	extract the me	tal.		
	Put tick	s (✔) in the two corre	ct boxes to show wh	nat happens in	this reaction.		
	Th	e metal compound is	oxidised.				
	Th	e metal compound is	reduced.				
	Th	e carbon is oxidised.					
	Th	e carbon is reduced.					[1]
(d)	What ca	an you say about the	metals which can be	e extracted in t	his way?		
	Choose	the best answer from	n A, B, C or D.				
	Α	They are totally unr	eactive.				
	В	They are less reacti	ve than carbon.				
	С	They are just as rea	active as carbon.				
	D	They are more read	tive than carbon.				
			ans	wer			[1]
(e)	Which r	metals can be extracted	ed by heating their o	ore with carbon	l?		
	Put a (ri	ing) around each corr	ect answer.				
		aluminium	copper	sodium	zinc		[1]

(f) Several reactions take place when iron is extracted from its ore.

Put numbers in the boxes to balance the equation for this reaction.

6 There are different types of sugar.

Here are diagrams of four of them.

(a) Which sugar, A, B, C or D, has the formula $C_4H_8O_4$?

answer[1]

(b) Sometimes we use the letter 'n' for a number in a formula.

Put a (ring) around each formula which applies to **all** these sugars.

 $(CH_2O)_n$ $C_nH_{2n}O_n$ C_nH_2O $C_5H_nO_5$ $C_6H_{12}O_n$ [2] [Total: 3] 7 Jo likes to listen to her MP3 player in the car.

She uses this circuit to connect her MP3 player to the 12 V car battery.

(a) When the MP3 player is switched on, the potential difference across it is 1.5 V and the current in it is 0.05 A.

What is the power of her MP3 player?

Put a (ring) around the correct answer.

0.033 W	0.075 W	30 W	[1]
---------	---------	------	-----

(b) Complete the sentences. Choose words from the list.

charge	power	resistance	temperature	voltage	
The resistor r	esists the flow	of	through the	e MP3 player.	
This results ir	n an increase ir	1	for the resis	tor.	[2]

(c) Which of these graphs, **A**, **B**, **C** or **D**, shows how the current in the resistor depends on the voltage across it?

answer[1]

[Total: 4]

- 16
- 8 Julie investigates the mains plug on her computer.

(a) The fuse contains a piece of wire which melts when the current is greater than 5 A.Put a tick (✓) in the box next to the correct explanation of this heating effect.

The heating effect of the fuse wire is caused by ...

(b) Julie calculates the maximum power she can draw from a mains socket using the plug. Which of these is the correct calculation?

Put a (ring) around the correct answer.

$$\frac{230}{5} \qquad 230 \times 5 \qquad \frac{5}{230} \qquad \frac{50}{5} \qquad 50 \times 5$$

[1]

© OCR 2008

(c) Complete the sentences.

Choose words from the list.

atoms	conductors	current	electrons	
insulators	ions	resistance	voltage	
The metal pins on th	e plug are			
This is because they	contain free			
They have a low				[3]
				[Total: 5]

9 Daniel builds this circuit. It contains an LDR.

(a) Daniel needs to measure the potential difference across the LDR.

To do this he adds a meter to the circuit.

Draw on the circuit diagram to show the meter connected correctly.

[1]

(b) Daniel increases the amount of light on the LDR.

The sentences explain how this affects the ammeter reading.

They are **not** in the correct order.

- A The current in the circuit increases.
- **B** The resistance of the LDR decreases.
- **C** There are more free electrons in the LDR.

Fill in the boxes to show the correct order.

 1	1

(c) The voltage across the cell is 1.5 V.

When the voltage across the LDR is 0.5 V, what is the voltage across the resistor?

Put a (ring) around the correct answer.

0 V	0.5 V	1.0 V	1.5 V	2.0 V	[1]
-----	-------	-------	-------	-------	-----

(d) Daniel replaces the cell with two cells in para	llel.
---	-------

Complete the sentence.

Choose from this list.

bigger than	smaller than	the same as	
The current in the circuit is now		it was for just one cell.	[1]

[Total: 5]

END OF QUESTION PAPER

Copyright Acknowledgements:

Q.1 photo © Mother & Baby Picture Library / EMAP

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

0	4 Helium 2	20 Ne 10	40 Ar ^{argon} 18	84 Kr krypton 36	131 Xe 54	[222] Rn radon 86	t fully
-		19 F fluorine 9	35.5 CI ^{chlorine} 17	80 Br ^{bromine} 35	127 I 53	[210] At astatine 85	irted but no
9		16 O ^{oxygen} 8	32 S ^{sulfur} 16	79 Se 34	128 Te tellurium 52	[209] PO 84	le been repo
വ		14 N nitrogen 7	31 Phosphorus 15	75 As ^{arsenic} 33	122 Sb antimony 51	209 Bi 83	112-116 hav uthenticated
4		12 C 6	28 Si 14	73 Ge ^{germanium} 32	119 Sn ^{tin} 50	207 Pb 1ead 82	mic numbers a
ო		11 boron 5	27 AI aluminium 13	70 Ga ^{galtium} 31	115 In indium 49	204 TI thallium 81	nts with ator
				65 Zn ^{zinc} 30	112 Cd ^{cadmium} 48	201 Hg 80	Eleme
				63.5 Cu ^{copper} 29	108 Ag silver 47	197 Au ^{gold} 79	[272] Rg 111
				59 Ni 28	106 Pd ^{palladium} 46	195 Pt platinum 78	[271] Ds ^{darmstadtium} 110
				59 Co cobalt 27	103 Rh ^{rhodium} 45	192 Ir 77	[268] Mt ^{meitnerium} 109
	hydrogen 1			56 Fe ^{iron} 26	101 Ru ruthenium 44	190 Os ^{osmium} 76	[277] Hs hassium 108
L				55 Mn ^{manganese} 25	[98] Tc 43	186 Re 75	[264] Bh ^{bohrium} 107
		mass ool number		52 Cr chromium 24	96 Mo ^{molybdenum} 42	184 W T4	[266] Sg 106
	Key	ve atomic omic symt name (proton) r		51 V vanadium 23	93 Nb 11 ^{niobium}	181 Ta tantalum 73	[262] Db ^{dubnium} 105
		relati ato atomic		48 Ti ^{títanium} 22	91 Zr zirconium 40	178 Hf ^{hafnlum} 72	[261] Rf rutherfordium 104
				45 Sc scandium 21	89 Y 39	139 La* Ianthanum 57	[227] Ac* actinium 89
2		9 Be beryllium 4	24 Mg 12	40 Ca calcium 20	88 Sr 38 38	137 Ba ^{barium} 56	[226] Ra ^{radium} 88
-		7 Li ^{lithium} 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr ^{francium} 87

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.