

H

A215/02

GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE ADDITIONAL SCIENCE A

Unit 1 Modules B4 C4 P4 (Higher Tier)

TUESDAY 17 JUNE 2008

Morning Time: 40 minutes

Candidates answer on the question paper. Additional materials (enclosed):

None

Calculators may be used.

Additional materials: Pencil

Ruler (cm/mm)

Candidate Forename				Candidate Surname			
Centre Number				Candidate Number			

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE				
Qu.	Max.	Mark		
1	4			
2	5			
3	1			
4	4			
5	4			
6	5			
7	5			
8	4			
9	5			
10	5			
TOTAL	42			

	This docum	ent consists	s of 20	printed	pages
--	------------	--------------	---------	---------	-------

SPA (MML 15551 2/07) T46091/4

© OCR 2008

OCR is an exempt Charity

[Turn over

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

speed =
$$\frac{\text{distance travelled}}{\text{time taken}}$$

momentum = mass × velocity

change of momentum = resultant force × time for which it acts

work done by a force = force × distance moved by the force

change in energy = work done

change in GPE = weight × vertical height difference

Electric Circuits

resistance =
$$\frac{\text{voltage}}{\text{current}}$$

$$\frac{V_{\rm p}}{V_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}}$$

energy transferred = power x time

power = potential difference × current

kinetic energy = $\frac{1}{2}$ x mass x [velocity]²

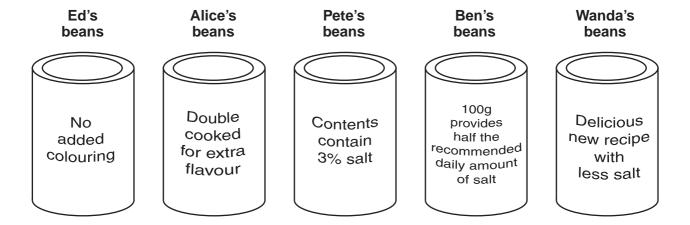
efficiency =
$$\frac{\text{energy usefully transferred}}{\text{total energy supplied}} \times 100\%$$

The Wave Model of Radiation

wave speed = frequency \times wavelength

Answer all the questions.

(a)	In 'low-salt', some of the sodium chloride is replaced with potassium chloride.
	Why is it possible to replace sodium chloride with potassium chloride in salt?


Choose the statement which is the most likely explanation.

- A Sodium is more reactive than potassium.
- **B** When salt dissolves, its ions split apart.
- **C** Potassium chloride flows more easily than sodium chloride.
- **D** Sodium and potassium are both in Group I.

answer [1]

(b) Johnny checks the amount of **salt** in different tins of baked beans.

The labels have different amounts of useful information.

Fill in the boxes below to show the order of increasing useful information in the labels.

The first one has been done for you.

order ——		\longrightarrow
Alice		

[3]

[Total: 4]

2 The European Smart-1 spacecraft was deliberately crashed onto the Moon's surface.

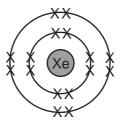
This threw up a cloud of dust and produced a flash of light.

Astronomers on Earth saw the flash of light and measured it with spectroscopes.

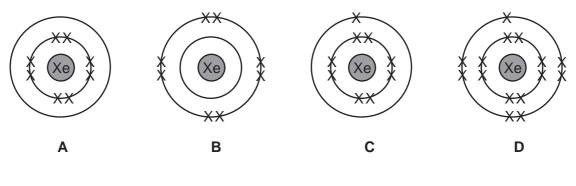
- (a) What was the flash used to find out about?
 - A the far side of the Moon
 - **B** elements in the rocks of the Moon's core
 - C elements in the dust from the Moon's surface
 - D elements in the Sun

answer [1]

(b) The spacecraft used a new type of rocket motor called an ion-engine to drive it through space. The engine ionises xenon gas, then it fires the ions through an exhaust nozzle.


Xenon melts at -120 °C, and it boils at -108 °C.

Put a (ring) around the best temperature inside the engine when it is working in space.


-273°C -173°C -110°C +273°C

[1]

(c) The outer two electron shells for an atom of xenon are:

Which of the following shows a xenon ion, Xe⁺?

answer [1]

(d) Xenon, which is in Group 0 of the Periodic Table on page 20, does not normally form ions.In which group of the Periodic Table do elements form ions with a single positive charge?Put a (ring) around the best answer.

Group 1 Group 2 Group 4 Group 6 Group 7 [1]

(e) Lithium azide contains the ${\rm Li}^+$ and the ${\rm N_3}^-$ ions.

Put a (ring) around the formula of lithium azide.

 LiN_3 $\operatorname{Li}_3\operatorname{N}_3$ $\operatorname{Li}_3\operatorname{N}$ LiNO_3

[Total: 5]

Sodium and calcium are both metals.	
Sodium compounds make flames turn orange.	
Calcium compounds make flames turn red.	
When you look at each flame through a spectrometer, what do you notice?	
Put a tick (✓) in the box next to the correct observation.	
The lines in the calcium spectrum are all red. The lines in the two spectra come in different places.	
The lines in the sodium spectrum are all red. The lines in the two spectra come in the same places.	
In both spectra, each line is a different colour. The lines in the two spectra come in the same places.	
In both spectra, each line is a different colour. The lines in the two spectra come in different places.	[1]
	[Total: 1]

- 4 We often need to show the state symbols, such as [aq], in chemical equations.
 - (a) Fill in the boxes to show the state symbol for each of these chemicals at room temperature.

chemical	melting point in °C	boiling point in °C	state symbol
А	114	184	
В	42	713	
С	-7	58	
D	-101	-34	

[2]

(b) When some compounds are melted they will then conduct electricity.

Draw **one** straight line to join the two statements which **best** explain why this is so.

particles

(choose one)

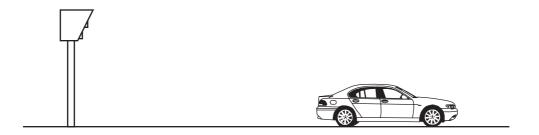
The particles in each element are ions.

The particles in the compound make up a regular lattice.

The particles in the compound are ions.

behaviour (choose one)

In a melted compound, electrons are passed from ion to ion.


In the melted compound, the ions can move.

Particles in a lattice vibrate more at higher temperatures.

[2]

[Total: 4]

5 Jake drives his car past a speed camera.

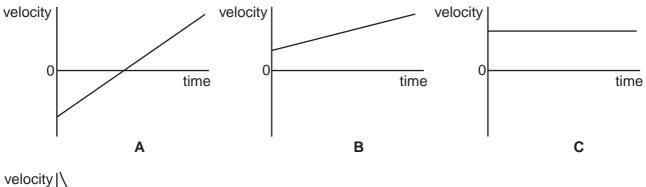
(a) The camera takes a photograph of the car.

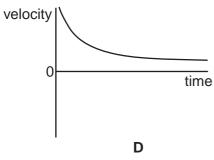
It takes another photograph 0.50s later.

The photographs show that the car moves a distance of 9.0 m between the two photographs.

What is the average speed of the car?

Put a (ring) around the correct answer.


0.056 m/s 4.5 m/s 18 m/s 450 m/s [1]


- **(b)** The car is speeding up as the photographs are being taken.
 - (i) Complete the table with **true** or **false** for a car which is speeding up.

The counter force on the car is	true or false
equal to the driving force.	
less than the driving force.	
getting smaller all the time.	
greater than the driving force.	
in the same direction as the driving force.	
in the opposite direction to the driving force.	

[2]

(ii) Which of these velocity-time graphs, A, B, C or D, shows the motion of the car as it passes the speed camera?

answer [1]

[Total: 4]

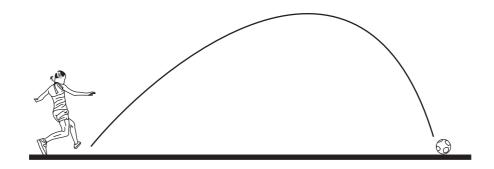
6 Sally plays football.

(a) She kicks a football with a force of 100 N.

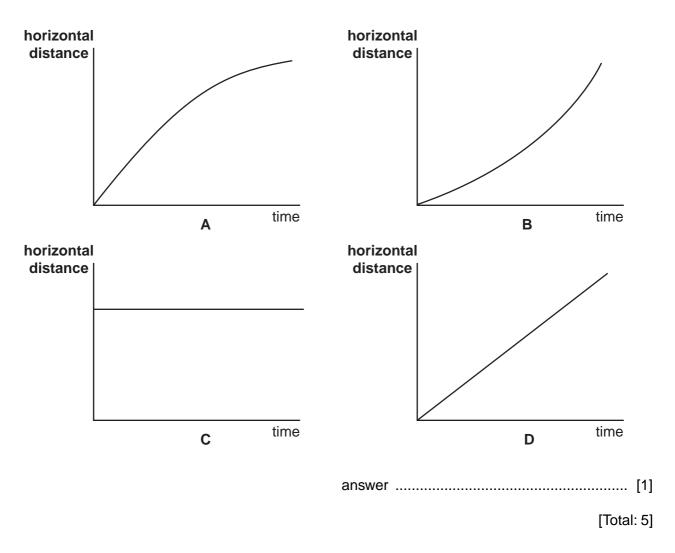
The momentum of the football changes by $50 \, kg \, m/s$.

How should she calculate the **time** for which her force acts?

Put a (ring) around the correct calculation.


$$\frac{100}{50}$$
 100 + 50 100 × 50 100 - 50 $\frac{50}{100}$ [1]

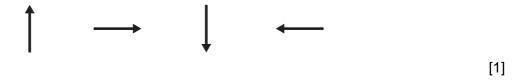
(b) Complete the table with true or false.


The force from Sally's foot	true or false
is equal to the weight of the ball.	
reduces the momentum of the ball.	
is greater than the reaction force from the ball.	
does work increasing the kinetic energy of the ball.	
has the same size as the reaction force from the ball.	
is in the same direction as the reaction force from the ball.	

[3]

(c) The diagram shows the path followed by the ball once it has left Sally's foot.

Which **one** of these graphs shows how the **horizontal distance** of the ball changes with time between leaving Sally's foot and hitting the ground?



7 Byron goes for a walk in the park.

(a) (i) Which of these arrows shows the direction of the reaction force from the ground on Byron's feet when he stands still?

Put a (ring) around the correct arrow.

(ii) The reaction force is part of an interaction pair.

Which of these forces is the **other** force in the interaction pair?

Put a (ring) around the correct answer.

counter force driving force friction weight [1]

(b) Byron walks at a steady speed across the ground.

Draw a straight line from the **start** of each sentence to its correct **end**.

start	ena
The friction force is	dissipated by heating.
The total reaction force is	equal to Byron's weight.
The work done by Byron is	enough to stop the feet slipping.
(c) Byron does 500 J of work as he	walks a distance of 100 m across the park.

This takes 50 s.

Calculate the average counter force.

Put a (ring) around the correct answer.

1N 5N 10N 50000N 2500000N

[Total: 5]

[1]

8 Dan is carrying out vigorous exercise.

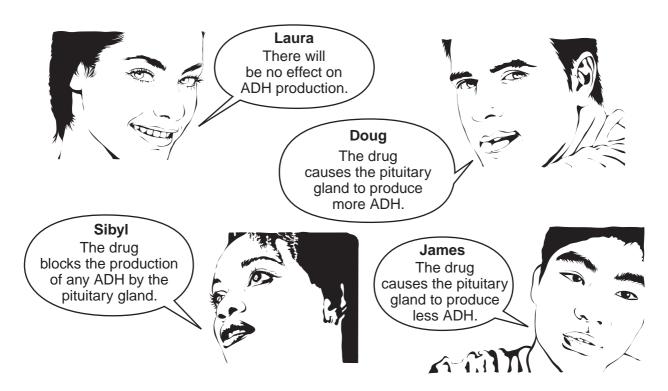
He is using equipment in a gym.

(a) Sweating is one aspect of homeostasis.

What is homeostasis?

Put a tick (\checkmark) in the box next to the correct answer.

the decrease in activity within the internal environment	
the increase in activity within the internal environment	
the maintenance of a constant internal environment	
the maintenance of a constant external environment	


[1]

(b)	Any changes in Da	an's core body tem	nperature are	detected and pro	cessed.		
	Different parts of the body are involved.						
	Complete the sent	ences. Choose the	e best words t	from this list.			
	Each word may be	used once, more	than once or	not at all.			
	blood	brain	heart	liver	skin		
	Changes in the ext	ternal temperature	e are detected	by temperature	receptors		
	in the						
	Changes in the ter	nperature of the b	lood are detec	cted by temperate	ure receptors		
	in the						
	Information receive	ed from the tempe	rature recepto	ors is processed			
	by the					[2]	
(c)	Dan loses water as	s he sweats.					
	How else can Dan	lose water?					
	Put a ring around	l each of the two o	correct answe	rs.			
	breathing	digesting	eating	excreting	respiring	[1]	
						ניו	

[Total: 4]

This question is about	kidneys.					
(a) Which of the follo	wing is totally reabso	orbed into the	blood in th	ne kidneys?		
Put a ring arour	nd the correct answe	r.				
sugar	proteins	salt	urea	water		[1
(b) The hormone AD	H is involved in regu	lating the bala	ance of wa	ter and salt in the	body.	
Draw a straight li	ne from the amount	of ADH relea	sed to the	correct blood cor	ntent.	
Draw a straight lin	ne from the amount	of ADH relea	sed to the	correct concentra	ition of ur	rine
blood content	amou	nt of ADH		concentration	of urine	
correct balance of water and salt				high		
too much salt	less AD	H released		medium		
too much water				low		
						[2
(c) The pituitary glan	d produces the ADH	l.				
Drinking alcoholic	c drinks, like beer an	d wine, can c	ause peopl	e to become dehy	drated.	
What does the al	cohol do to the produ	uction of ADH	?			
Put a tick (✔) in t	he box next to the co	rrect answer.				
It allows the	same amount of AD	H to be produ	ced by the	pituitary gland.		
It causes the	pituitary gland to pr	oduce less Al	DH.			
It causes the	pituitary gland to pr	oduce more A	ADH.			[1

(d) Four people were asked to describe the effect of the drug Ecstasy on the activity of the pituitary gland.

Who gave the correct answer?

answer[1]

[Total: 5]

10 Liz uses an experiment to show the effect of different solutions on potato tissue.

She cuts up pieces of potato, measures their length, and puts them in different beakers.

After an hour, Liz measures the length of the potato pieces again.

(a) Complete the following table.

Put ticks (✓) in the correct boxes to show the **contents** of each beaker.

		contents of each beaker				
beaker	length of potato pieces	dilute sugar solution	highly concentrated sugar solution	pure water		
Α	much shorter					
В	much longer					
С	little or no change					

[2]

(b) Liz tries to return the length of the potato pieces in beaker **B** to the original size.

What should she do?

Put a tick (✓) in the box next to the correct answer.

put the potato pieces into pure water	
dry the potato pieces with a paper towel	
put the potato pieces into a less concentrated sugar solution	
put the potato pieces into a more concentrated sugar solution	

[1]

(c) Liz knows that the process involved in her experiment is osmosis.

She asks some of her friends to say what happens in osmosis.

...... and [2]

[Total: 5]

END OF QUESTION PAPER

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

0 4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	ıt fully
7	19 F fluorine 9	35.5 Cl chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but no
9	16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ve been repo
2	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112-116 hav authenticated
4	12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82	mic numbers a
3	11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 TI thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
·			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elemei
			63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium
			59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78	Ds darmstadtium
			59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt meitnerium 109
H hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
			55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
	mass ol number		52 Cr chromium 24	96 Mo motybdenum 42	184 W tungsten 74	Sg seaborgium 106
Key	Key relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
	relativ ato atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	Rf rutherfordium 104
'			45 Sc scandium 21	89 Y yttrium 39	139 La* Ianthanum 57	[227] Ac* actinium 89
2	9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
-	7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.