

■ A215/01

GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE ADDITIONAL SCIENCE A

Unit 1 Modules B4 C4 P4 (Foundation Tier)

TUESDAY 17 JUNE 2008

Morning Time: 40 minutes

Candidates answer on the question paper.

Additional materials (enclosed):

None

Calculators may be used.

Additional materials: Pencil

Ruler (cm/mm)

Candidate Forename			Candidate Surname								
Centre Number					Candidate Number						

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

FOR EX	AMINER	S'S USE
Qu.	Max.	Mark
1	4	
2	5	
3	1	
4	4	
5	4	
6	5	
7	5	
8	5	
9	4	
10	2	
11	3	
TOTAL	42	

This document consists of 19 prin	ited bades and 1 blank bade
--	-----------------------------

SPA (MML 15551 2/07) T46090/4

© OCR 2008

OCR is an exempt Charity

[Turn over

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

speed =
$$\frac{\text{distance travelled}}{\text{time taken}}$$

momentum = mass × velocity

change of momentum = resultant force × time for which it acts

work done by a force = force × distance moved by the force

change in energy = work done

change in GPE = weight × vertical height difference

Electric Circuits

resistance =
$$\frac{\text{voltage}}{\text{current}}$$

$$\frac{V_{\rm p}}{V_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}}$$

energy transferred = power x time

power = potential difference × current

kinetic energy = $\frac{1}{2}$ x mass x [velocity]²

efficiency =
$$\frac{\text{energy usefully transferred}}{\text{total energy supplied}} \times 100\%$$

The Wave Model of Radiation

wave speed = frequency \times wavelength

Answer all the questions.

1 (a) Some bottles of chemicals have hazard symbols on them.

Draw a straight line from each **hazard symbol** to its **meaning**.

hazard symbol

meaning

corrosive

toxic

highly flammable

(b) We often need to know whether a chemical is a solid, liquid or gas at room temperature.

Fill in the boxes to show if these chemicals are solid, liquid or gas at room temperature.

chemical	melting point in °C	boiling point in °C	solid, liquid or gas
А	114	184	
В	42	713	
С	-7	58	

[2]

[2]

[Total: 4]

[1]
per = 3.
[3]
[1]
[Total: 5]

3 In 1859 Robert Bunsen discovered line spectra.

Mary asks her friends why line spectra are useful.

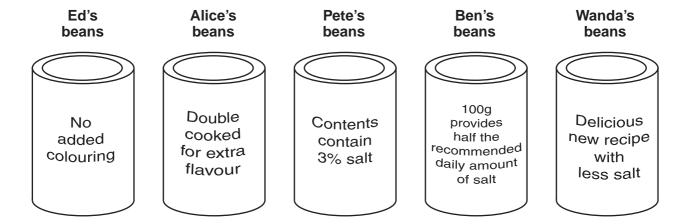
Who gives the **best** answer?

answer[1]

[Total: 1]

4	A doctor tells Johnn	by that he should use 'low-salt' instead of normal sa	alt
4	A GOCIOI IEIIS JOHIIII	iy inai ne should use low-sail instead of normal sa	aιι.

(a)	n 'low-salt', some of the sodium chloride is replaced with potassium chlor	ide.
	Why is it possible to replace sodium chloride with potassium chloride in sa	alt?


Choose the statement which is the most likely explanation.

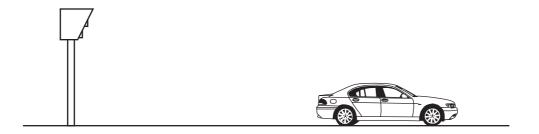
- A Sodium is more reactive than potassium.
- **B** When salt dissolves, its ions split apart.
- **C** Potassium chloride flows more easily than sodium chloride.
- **D** Sodium and potassium are both in Group I.

answer[1]

(b) Johnny checks the amount of salt in different tins of baked beans.

The labels have different amounts of useful information.

Fill in the boxes below to show the order of **increasing** useful information in the labels.


The first one has been done for you.

order ——		\longrightarrow
Alice		

[3]

[Total: 4]

5 Jake drives his car past a speed camera.

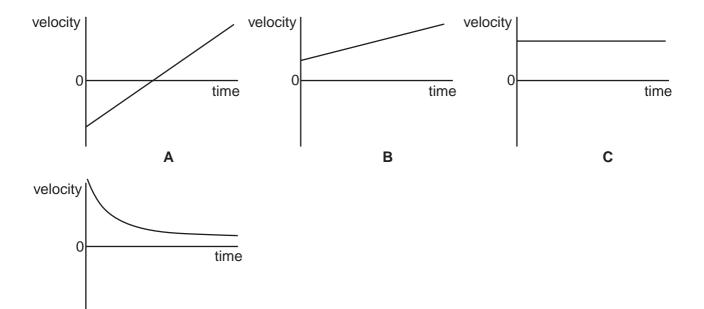
(a) The camera takes a photograph of the car.

It takes another photograph 0.50s later.

The photographs show that the car moves a distance of 9.0 m between the two photographs.

What is the average speed of the car?

Put a (ring) around the correct answer.


0.056 m/s 4.5 m/s 18 m/s 450 m/s [1]

- **(b)** The car is speeding up as the photographs are being taken.
 - (i) Complete the table with true or false for a car which is speeding up.

The counter force on the car is	true or false
equal to the driving force.	
less than the driving force.	
getting smaller all the time.	
greater than the driving force.	
in the same direction as the driving force.	
in the opposite direction to the driving force.	

[2]

(ii) Which of these velocity-time graphs, A, B, C or D, shows the motion of the car as it passes the speed camera?

D

answer [1]

[Total: 4]

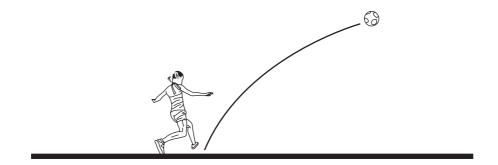
6 Sally plays football.

(a) When she kicks the ball, she exerts a force on it.

The direction of the force is shown in the diagram above.

One of the diagrams below shows the direction of the force on Sally's foot from the ball.

Draw a (ring) around the correct diagram.


(b) Sally exerts a force of 100 N on the ball for 0.25 s.

How should she calculate the change of momentum of the ball?

Put a (ring) around the correct calculation.

$$\frac{100}{0.25}$$
 100×0.25 $\frac{0.25}{100}$ [1]

(c) The diagram shows the path followed by the ball once it has left Sally's foot.

Complete the sentences. Choose words from this list.

	mass	motion	weight	
	kinetic	momentum	gravitational	
(i)	As the ball rises into the a	air it gains	potential energy.	[1]
(ii)	This is because of the wo	rk the ball does ag	ainst its	[1]
(iii)	At the same time, the ball	loses	energy.	[1]
			[To	otal: 5]

Byron goes for a walk in the park. 7

(a) The ground under Byron's feet exerts two forces on him.

Complete the table. Choose words from this list.

You may **not** use the same word twice.

friction mass reaction weight

direction of force from the ground	name of force
vertical	
horizontal	

[2]

(b) Byron moves forwards at a steady speed.

Complete the sentences. Choose words from this list.

You may **not** use the same word twice.

weight	friction	upwards	forwards	backwards
To move forw	ards, Byron's foc	ot has to exert a		force on the ground.
The foot doe	s not slip becaus	e of		
The friction e	exerts a	force o	n Byron's foot.	

[3]

[Total: 5]

[Turn over © OCR 2008

8 Dan is carrying out vigorous exercise.

He is using equipment in a gym.

(a) What happens to Dan's core body temperature to cause him to sweat?

Put a (ring) around the correct answer.

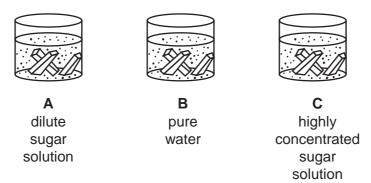
	decreases	increases	stays the same	[1]
(b)	Sweating is one aspect of home	eostasis.		
	What is homeostasis?			
	Put a tick (✓) in the box next to	the correct answer.		
	the decrease in activity with	nin the internal envir	onment	
	the increase in activity withi	in the internal envirc	nment	
	the maintenance of a const	tant internal environr	nent	
	the maintenance of a const	tant external environ	ment	[1]

(c)	Any changes in Da	an's core body tem	perature are de	tected and pro	cessed.		
	Different parts of t	he body are involve	ed.				
	Complete the sent	tences. Choose the	best words fro	m this list.			
	Each word may be	e used once, more	than once or no	ot at all.			
	blood	brain	heart	liver	skin		
	Changes in the ex	ternal temperature	are detected by	y temperature r	eceptors		
	in the						
	Changes in the ter	mperature of the blo	ood are detecte	ed by temperatu	ire receptors		
	in the						
	Information receive	ed from the temper	ature receptors	is processed			
	by the					[2]	
(d)	Dan loses water a	s he sweats.					
	How else can Dan lose water?						
	Put a (ring) around each of the two correct answers.						
	breathing	digesting	eating	excreting	respiring	[1]	
						[Total: 5]	

Bac	teria are able to break down and digest food.					
The	The bacteria secrete enzymes onto the food to speed up the process.					
(a)	What are enzymes made of?					
	Put a tick (✓) in the correct box.					
	carbohydrates					
	fats					
	proteins		[1]			
(b) Fresh food is often stored in a refrigerator at 4°C to keep it fresh for longer.						
	Why does this work?					
	Put a tick (✓) in the correct box.					
	Bacteria die at 4°C.					
	Enzymes work much more slowly at 4°C.					
	Bacteria reproduce more rapidly at 4°C.		[1]			

(c) Food cooked at high temperatures can last longer than fresh food.

Five people were asked to give a reason for this.



[Total: 4]

10 Liz uses an experiment to show the effect of different solutions on potato tissue.

She cuts up pieces of potato, measures their length, and puts them in different beakers.

After an hour, Liz measures the length of the potato pieces again.

(a) What will happen to the length of the potato pieces in beaker B?

Put a (ring) around the correct answer.

length decreases length increases length stays the same [1]

(b) Which process is Liz studying in her experiment?

Put a (ring) around the correct answer.

digestion osmosis respiration [1]

[Total: 2]

11 Kidneys keep the correct balance of water and salt in the body.

They also carry out the process of excretion.

(a) Which of the following is **not** reabsorbed into the blood in the kidneys?

Put a (ring) around the **one** correct answer.

salt sugar urea water

[1]

(b) The amount of water removed by the kidneys is affected by a number of factors.

The kidneys can produce more dilute or more concentrated urine as a result.

Put a tick (✓) in the correct box for each factor.

factors	more dilute urine	more concentrated urine
An increased level of physical exercise is taking place.		
There is a high external temperature.		
Too much fluid is taken in to the body.		
Too much salt is taken in to the body.		

[2]

[Total: 3]

END OF QUESTION PAPER

18 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

0 4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	ıt fully
7	19 F fluorine 9	35.5 Cl chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but no
9	16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ve been repo
2	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112-116 hav authenticated
4	12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82	mic numbers a
3	11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 TI thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
·			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elemei
			63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium
			59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78	Ds darmstadtium
			59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt meitnerium 109
H hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
			55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
	mass ol number		52 Cr chromium 24	96 Mo motybdenum 42	184 W tungsten 74	Sg seaborgium 106
Key	Key relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
	relativ ato atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	Rf rutherfordium 104
'			45 Sc scandium 21	89 Y yttrium 39	139 La* Ianthanum 57	[227] Ac* actinium 89
2	9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
-	7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.