GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE
ADDITIONAL SCIENCE A
Unit 1 Modules B4 C4 P4 (Higher Tier)
WEDNESDAY 23 JANUARY 2008

Candidates answer on the question paper.
Additional materials (enclosed):
None
Calculators may be used.
Additional materials: Pencil

H

Candidate
Surname

Candidate
Number

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Do not write outside the box bordering each page.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE		
Qu.	Max	Mark
1	4	
2	5	
3	1	
4	1	
5	3	
6	4	
7	5	
8	5	
9	4	
10	6	
11	4	
TOTAL	42	

This document consists of 19 printed pages and 1 blank page

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

```
speed \(=\frac{\text { distance travelled }}{\text { time taken }}\)
momentum \(=\) mass \(\times\) velocity
change of momentum \(=\) resultant force \(\times\) time for which it acts
work done by a force \(=\) force \(\times\) distance moved by the force
change in energy \(=\) work done
change in GPE \(=\) weight \(\times\) vertical height difference
kinetic energy \(=\frac{1}{2} \times\) mass \(\times[\text { velocity }]^{2}\)
```


Electric Circuits

```
resistance \(=\frac{\text { voltage }}{\text { current }}\)
```

 \(\frac{V_{\mathrm{p}}}{V_{\mathrm{s}}}=\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}\)
 energy transferred $=$ power \times time
power $=$ potential difference \times current
efficiency $=\frac{\text { energy usefully transferred }}{\text { total energy supplied }} \times 100 \%$

The Wave Model of Radiation

```
wave speed \(=\) frequency \(\times\) wavelength
```

Answer all the questions.

1 Jenny studies three elements, $\mathbf{L i}, \mathbf{N a}$ and \mathbf{K}.
She finds this information in a data booklet.

PERIODIC TABLE
PERIODIC

	melting point ${ }^{\circ} \mathrm{C}$	boiling point ${ }^{\circ} \mathrm{C}$
Li	180	1342
Na		883
K	63	

(a) Suggest a melting point for Na .
answer
(b) Suggest a boiling point for \mathbf{K}.
answer
(c) Another data book gives the boiling point for $\mathbf{L i}$ as $1330^{\circ} \mathrm{C}$ instead of $1342^{\circ} \mathrm{C}$. Jenny thinks of some reasons for this.

Put a tick (\checkmark) in the box next to the best reason.

Boiling points increase each time they are measured.
The measurements were made with different amounts of Li .
It is difficult to measure such a high boiling point accurately.
The second book rounded the numbers to the nearest ten degrees.

\square
(d) Potassium reacts with chlorine gas to make potassium chloride.

What is the formula of potassium chloride?
[Total: 4]

2 Lithium chloride is an ionic compound. It dissolves in water.
(a) Which diagram, A, B, C or D, shows the particles in a lithium chloride solution?

(b) How can we be certain that lithium chloride is ionic?

Put a tick (\mathcal{J}) in the box next to the correct answer.

(c) Lithium reacts with bromine.

Balance the equation for this reaction.

$$
\square \mathbf{L i}+\mathrm{Br}_{2} \rightarrow \square \mathrm{LiBr}
$$

(d) Solid iron also reacts with bromine vapour. It makes crystals of iron bromide.

Add state symbols to the equation below.

$$
\begin{equation*}
3 \mathrm{Br}_{2}(\ldots \ldots)+2 \mathrm{Fe}(\ldots \ldots) \rightarrow 2 \mathrm{FeBr}_{3}(\ldots \ldots) \tag{1}
\end{equation*}
$$

[Total: 5]

3 When Bobby throws copper compounds into a flame, the flame gives a green light.
When Bobby throws calcium compounds into a flame, the flame gives a red light.
He uses a spectrometer to compare the spectrum of calcium with that of copper.
A spectrum is made of a series of lines.

Put a tick (\mathcal{J}) in the box next to the correct statement about a calcium spectrum.
The lines are in the same place as the copper lines. All the lines are red.

The lines are in different places from the copper lines. Each line is a different colour. \square
The lines are in the same place as the copper lines. Each line is a different colour. \square
The lines are in different places from the copper lines. All the lines are green. \square

4 The formula of sodium phosphate is $\mathrm{Na}_{3} \mathrm{PO}_{4}$. The sodium ion is Na^{+}.
Put a ring around the correct formula of the phosphate ion.
$\mathrm{PO}_{4}{ }^{3+}$
$\mathrm{PO}_{4}{ }^{4+}$
$\mathrm{PO}_{4}{ }^{3-}$
$\mathrm{PO}_{4}{ }^{4-}$
[Total: 1]

5 The table shows the numbers of protons, neutrons and electrons in different particles A, B, C, D and \mathbf{E}.

	A	B	C	D	E
number of protons	11	11	11	9	9
number of neutrons	11	12	11	10	10
number of electrons	11	11	10	9	10

(a) Which particle has the greatest mass? \qquad
(b) Which particle has a negative charge?
(c) Which particles are atoms?

6 The diagram shows the forces acting on a helicopter in level flight.

(a) What is the direction of the resultant force on the helicopter?

Put a ring around the correct answer.
backwards
downwards
forwards
upwards
(b) What is the size of the resultant force on the helicopter?

Put a ring around the correct answer.
1 kN
2 kN
3 kN
5 kN
12 kN
(c) Which quantities will be increasing for the helicopter?

Put ticks (\mathcal{J}) in the boxes next to the two correct answers.

7 Paul is a taxi driver in town.

He claims that his speed is always less than $50 \mathrm{~km} / \mathrm{h}$, and he can use friction to reduce his velocity to zero.
(a) Draw a straight line from each quantity to its correct definition.
quantity
speed

definition

the force needed to stop an object moving
the distance moved by an object in each second
how fast and in what direction an object is moving
a counter force arising from the motion of an object
(b) What is the correct way of converting 50 kilometres per hour into metres per second?

Put a ring around the correct answer.
$\frac{50000}{3600} \quad 50000 \times 3600 \quad \frac{3600}{50000}$
(c) Paul's momentum is $900 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ when he is travelling at $50 \mathrm{~km} / \mathrm{h}$.

He slams on the brakes and stops the car in 3.0 s , moving a distance of 18 m .
(i) Which is the correct distance-time graph for Paul from the time he applies the brakes?

(ii) How big is the force needed to stop Paul moving?

Put a ring around the best answer.
18 N
50 N
300 N
900 N
2700 N
(d) Why should Paul wear a seatbelt?

Put a tick (\mathcal{J}) in the box next to the correct answer.

A seatbelt increases the counter force on him in a crash.
A seatbelt transfers less energy to him as the car slows down.
A seatbelt increases the time it takes for him to slow down in a crash.
A seatbelt reduces the amount of momentum he needs to lose in a crash.

8 Julie drops a brick into a deep well.

The brick falls through the air until it hits the water.
(a) Finish the sentences. Choose words from this list.
weight
mass
gravitational potential energy

kinetic energy

As the brick falls through the air, work is done by its \qquad .. .

This increases its \qquad .
(b) The brick is moving at $30 \mathrm{~m} / \mathrm{s}$ when it hits the water.

The mass of the brick is 2 kg .
The weight of the brick is 20 N .
How much kinetic energy does it have?
Put a ring around the correct answer.
(c) Julie knows that the brick's gravitational potential energy changes by 1000 J as it falls down the well into the water. She uses this to calculate the velocity of the brick when it hits the water.

Put a ring around the correct calculation.
$\sqrt{\frac{1000}{1 / 2 \times 2}}$
$\sqrt{\frac{1000}{10}}$
$\frac{1000}{10}$
$\frac{1000}{2}$
(d) Julie's calculated value is not $30 \mathrm{~m} / \mathrm{s}$.

Put a tick (\mathcal{J}) in the box next to the correct reason.

The brick speeds up as it falls through the air.
Air resistance dissipates some energy through heating.
The weight of the brick increases as it moves down the well.
Some of the brick's momentum is transferred through heating.

9 Andrew draws a model to show osmosis.

(a) What does side B in the model represent?

Put a tick (\mathcal{J}) in the box next to the correct answer.

A concentrated solution.
A dilute solution.
Pure water.

(b) Why did Andrew include a partially permeable membrane in his model?

Put a tick (\checkmark) in the box next to the correct answer.

To stop glucose molecules and water molecules from passing through.
To stop glucose molecules from passing through.
To stop water molecules from passing through.
\square
\square
(c) What happens to the water molecules?

Put a tick (\mathcal{J}) in the box next to the correct answer.

Water molecules move mostly from side \mathbf{A} to side \mathbf{B}.
Water molecules move mostly from side \mathbf{B} to side \mathbf{A}.

Water molecules move equally between side \mathbf{A} and side \mathbf{B}.
Water molecules do not move between side \mathbf{A} and side \mathbf{B}.
(d) What will happen when Andrew adds four more glucose molecules to side \mathbf{B} in his model? Put a tick (\mathcal{J}) in the box next to the correct answer.

Water molecules move mostly from side \mathbf{A} to side \mathbf{B}.
Water molecules move mostly from side \mathbf{B} to side \mathbf{A}.
Water molecules move equally between side \mathbf{A} and side \mathbf{B}.
Water molecules do not move between side \mathbf{A} and side \mathbf{B}.

10 Liz draws a model to show the different stages which take place when an enzyme speeds up the breakdown of a molecule.
(a) Complete diagrams \mathbf{B} and \mathbf{C} to show the stages in the breakdown of a molecule.

A

B

C

D
(b) What is the name of this model?

Put a ring around the correct answer.

kinetic theory	lock and	random collision	nut and bolt
model	key model	model	model

(c) Liz then carries out an experiment and draws a graph of her results.

The graph shows the rate of reaction of an enzyme at different temperatures.

Liz asks five friends to explain what happened at part X of her graph.
Some of her friends gave correct explanations, others did not.

Which friends gave correct explanations?
\qquad and
(d) Which variable can alter the shape of the active site of the enzyme?

Put a tick (\checkmark) in the box next to the correct variable.

Concentration of enzyme.
Concentration of substrate.
pH of mixture.
Speed of collisions.

11 This question is about the hormone ADH.
(a) Which part of the body releases ADH?

Put a ring around the correct answer.
adrenal gland kidney pituitary gland testes
(b) How is ADH transported around the body and what is its function?

Draw one straight line from the correct method of transport of ADH to the correct function of ADH.

function

control of urine concentration
releasing digestive enzymes
converting glucose into glycogen

```
decreasing
```

decreasing
vasodilation

```
vasodilation
```

(c) What happens to the production of urine by the kidneys when a person takes the drug ecstasy?

Draw one straight line from the correct change in the volume of urine to the correct change in its concentration caused by the drug ecstasy.
volume of urine

smaller
stays the same
concentration
\square
more dilute
stays the same

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable

 effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.
The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

