GENERAL CERTIFICATE OF SECONDARY EDUCATION

Candidates answer on the question paper.
Additional materials (enclosed):
None
Calculators may be used.
Additional materials: Pencil
Ruler

Candidate

Surname

Centre
Number

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Do not write outside the box bordering each page.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE

Qu.	Max	Mark
1	5	
2	4	
3	5	
4	4	
5	2	
6	5	
7	2	
8	1	
9	4	
10	5	
11	5	
TOTAL	42	

This document consists of 19 printed pages and $\mathbf{1}$ blank page.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

```
speed \(=\frac{\text { distance travelled }}{\text { time taken }}\)
momentum \(=\) mass \(\times\) velocity
change of momentum \(=\) resultant force \(\times\) time for which it acts
work done by a force \(=\) force \(\times\) distance moved by the force
change in energy = work done
change in GPE \(=\) weight \(\times\) vertical height difference
kinetic energy \(=\frac{1}{2} \times\) mass \(\times[\text { velocity }]^{2}\)
```


Electric Circuits

```
resistance \(=\frac{\text { voltage }}{\text { current }}\)
```

 \(\frac{V_{\mathrm{p}}}{V_{\mathrm{s}}}=\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}\)
 energy transferred $=$ power \times time
power $=$ potential difference \times current
efficiency $=\frac{\text { energy usefully transferred }}{\text { total energy supplied }} \times 100 \%$

The Wave Model of Radiation

wave speed $=$ frequency \times wavelength

BLANK PAGE

Question 1 begins on page 4.

4
Answer all the questions.

James is studying cells which are undergoing mitosis.

(a) James counts the number of chromosomes in the nuclei at the start and at the end of mitosis.

What does he notice about the number of chromosomes in each nucleus?
Put a tick (\mathcal{J}) in the correct box.

The chromosome number had decreased at the end of mitosis. \square
The chromosome number had increased at the end of mitosis.

The chromosome number had stayed the same at the end of mitosis. \square
(b) What happens to the number of organelles in the cytoplasm before the start of mitosis?

Put a ring around the correct answer.
decreases increases stays the same
(c) (i) Here are some statements about mitosis.

Some statements are true. Some are false.
Write true or false in the box next to each statement.

statement	true / false
The new cells produced are gametes.	
The new cells produced are identical to each other.	
There are four new cells produced from each complete mitosis.	
The new cells produced are identical to the parent cell.	

(ii) Which cell contains a set of chromosomes from each parent? Put a ring around the correct answer.
egg
sperm
zygote
[Total: 5]

2 Genes are made of DNA. The DNA contains four different bases (A, T, C and G).
The order of these bases makes a code which controls the order of amino acids in a protein made by a gene.

A triplet (sequence of three bases) is needed to code for each amino acid. Examples of this code are shown in the table.

amino acid	triplet base order
1	T G A
2	A A C
3	C G T
4	TA T

(a) Which one of the four amino acids (1, 2, 3 or 4) will not be found in the protein produced by the following order of bases?

Put a ring around the correct answer.
1
2
3
4
(b) What is the maximum number of triplets produced by the four bases?

Put a ring around the correct answer.
32
64
128
256
(c) The number of different amino acids is less than the number of triplet codes available.

Three students were asked to explain this.

Who is most likely to be wrong?
Put a ring around the name of this student.
Des
Maria
Ruth
(d) The DNA molecule contains two strands of bases held together in pairs.

Which bases pair together?
Draw a straight line to join each base to its pair base.
base

C
\square
pair base

A
\square
\square
[Total: 4]

3 Rosie is a scientist working in a tissue culture laboratory. She carries out the following steps to grow tissues for transplanting into a particular patient.

A human embryo is grown from an egg cell with the original nucleus replaced with the nucleus from one of the patient's cells.

Cells are removed from the treated embryo to produce a stem cell culture.

(a) Why was the egg cell nucleus replaced with one from the patient?

The following sentences are either true or false.
Put a tick (\mathcal{J}) in the correct box for each sentence.

	true	false
The stem cell culture can be used to form gametes for the patient.		
The stem cells have the potential to replace damaged tissues within the patient.		
The stem cells will be a close match to cells in the patient.		

(b) Why are stem cells useful for transplanting into patients?

Put a ring around the two correct answers.

they are	they are	they grow	they divide
unspecialised	differentiated	rapidly	by meiosis

(c) Which stages of development can be used successfully for collecting stem cells?

Put a ring) around the latest stage that can be used successfully for collecting stem cells.

4 cells

8 cells

16 cells

32 cells
(d) Rosie asks a group of her friends to compare human cells with plant cells.

Which two people gave correct answers?
\qquad and
[Total: 5]

4 (a) Wilhelmina draws part of the carbon cycle.

(i) Which stage of the cycle ($\mathbf{1}$ to 9) shows carbon being transferred to animals?
(ii) Carbon can get from the air into the rocks by two different routes.

Put numbers from the carbon cycle in the boxes to show both of these routes.

(b) Wilhelmina finds out the composition of some of the molecules involved in the carbon cycle.

	\% composition by mass			
	carbon	hydrogen	oxygen	nitrogen
fat	76.9	12.4	10.7	-
carbohydrate	40	6.7	53.3	-
DNA	33.2	4.0	44.3	8.6
protein	32	6.7	42.7	18.6

(i) Which two types of molecules contain only carbon, hydrogen and oxygen?
and \qquad
(ii) Name all the elements in protein.
\qquad

5 These are the chemical symbols for some ions.
Br^{-} Cl^{-}
K^{+}
$\mathbf{M g}^{\mathbf{2 +}}$
Na^{+}
O^{2-}
S^{2-}
$\mathrm{SO}_{4}{ }^{2-}$
(a) What is the formula of magnesium bromide?

Put a ring around the correct answer.

$$
\begin{equation*}
\operatorname{Mg2Br} \quad \mathrm{Mg}_{2} \mathrm{Br} \quad \mathrm{MgBr} \quad \mathrm{MgBr}_{2} \tag{1}
\end{equation*}
$$

(b) What is the formula of sodium sulfate?

Put a ring around the correct answer.
$\begin{array}{lllll}\mathrm{Na}_{2} \mathrm{SO}_{4} & \mathrm{NaSO}_{4} & \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2} & \mathrm{NaS} & \mathrm{Na}_{2} \mathrm{~S}\end{array}$
[Total: 2]

6 A lump of metal ore contains different substances.

(a) The following sentences about ores are either true or false.

Put a tick (\checkmark) in the correct box for each sentence.

	true	false
They contain varying amounts of minerals.		
Metals can be extracted from them.		
They are pure compounds.		

(b) Aluminium is obtained from its ore by electrolysis.

Here are some statements about electrolysis.
Some statements are correct, some are incorrect.
Put a tick (\mathcal{J}) in the best box for each statement.

	correct	incorrect
lons are produced when the ore melts.		
lons are present in the solid ore.		
Ions in the solid move to the electrodes.		
Negative ions move towards the anode during electrolysis.		
Metals are discharged when their ions gain electrons.		
Positive ions move towards the cathode during electrolysis.		
lons in the liquid move to the electrodes.		

(c) Aluminium ore is made of aluminium oxide, $\mathrm{Al}_{2} \mathrm{O}_{\mathbf{3}}$.

How much aluminium is in 100 tonnes of pure aluminium oxide?
[Relative atomic mass $\mathbf{O}=16 ; \mathbf{A l}=27$]
Put a ring around the correct answer.
26.5 tonnes
40 tonnes
52.9 tonnes
66.6 tonnes

7 This question is about ores.
(a) A sample of a copper ore is made of crystals.

Choose the best explanation, A, B, C or D, for this.
A The molten rock cooled very rapidly.
B The molten rock was under huge pressure.
C Atoms in the rock arranged themselves in a regular way.
D There was only a small space in which the rock could solidify.
answer
(b) The diagrams show different ways of arranging particles in a solid.
A

B

c 888888 888888 888888 888888
D

Which of these solids, A, B, C and D, are made of crystals?
answer

8 Which statement is the best explanation of why air is a gas?
A Air is made of several substances.
B The forces inside each molecule are weak.
C The forces between molecules are weak.
D Air has a low density.

> answer
[Total: 1]

9 Karen makes this electric circuit.

(a) When the switch is open, the lamp does not light.

Put a tick (\mathcal{J}) in one box to show the best way to complete each sentence.
(i)
tick (\mathcal{J})

a conductor	
an insulator	
a transformer	
a transmitter	

(ii)
tick (\mathcal{J})

charge	
potential difference	
resistance	
voltage	

moves round the circuit.
[1]
(b) Karen now connects an ammeter to measure the current in the lamp.

Add an ammeter to the circuit diagram and complete the circuit.

(c) The lamp only glows dimly when Karen presses the switch.

Karen wants to increase the current in the lamp.
She tries different ways of doing this.
Complete the table by writing true or false in each box.

To increase the current in the lamp, Karen should ...	true / false
\ldots assemble the circuit without the resistor.	
\ldots connect the resistor in parallel with the lamp.	
\ldots connect a second resistor in series with the lamp.	

10 Most of our electricity is made in power stations.

(a) The generator in a power station produces an alternating voltage.

What is the name of the process used to generate electricity?
Put a ring around the correct answer.

metallic conduction
 electrostatic induction electromagnetic induction

(b) The sentences explain how electricity is produced in a power station and transferred to our homes.

A	The voltage is stepped up by a transformer.
B	There is an alternating voltage across the coil.
C	The voltage is stepped down by a transformer.
D	Alternating current is carried by the National Grid.
E	Alternating current transfers energy in our homes.
F	A magnet spins around a coil of wire in the generator.

Complete the table to show the correct order of the sentences.

F					E

(c) The primary coil of a transformer is connected to a 12 V a.c. input.

Which one of these is the correct calculation for the voltage of the a.c. output?
Put a ring around the correct calculation.
$12 \times 9 \times 5$
$12 \times \frac{9}{5}$
$12 \times \frac{5}{9}$
$5 \times \frac{9}{12}$
[Total: 5]

11 This circuit contains a thermistor.

(a) The temperature increases.

The sentences explain the change in the voltmeter reading.
They are in the wrong order.

A	The potential difference across the resistor increases.
B	The resistance of the thermistor decreases.
C	The current in the circuit increases.

Show the correct order by writing \mathbf{A}, \mathbf{B} or \mathbf{C} in each box.

(b) Draw straight lines to link each statement with its best explanation.

statement

The current in the thermistor is the same as the current in the resistor.
explanation
The battery pushes free electrons through the components.

As the free electrons leave one component, they flow straight into the next one.

The free electrons transfer the energy gained from the battery to the resistor and thermistor.

The voltages across the thermistor and resistor add up to the voltage of the battery.
(c) The battery supplies a potential difference of 6 V .

At a certain temperature the current in the 45Ω resistor is 0.08 A .
Which is the correct calculation for the potential difference across the thermistor?
Put a ring around the correct calculation.
$6-(0.08 \times 45)$
$6+(0.08 \times 45)$
0.08×45
$\frac{45}{0.08}$
[Total: 5]

END OF QUESTION PAPER

[^0]

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.
The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

