GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE ADDITIONAL SCIENCE A
Unit 1 Modules B4 C4 P4 (Foundation Tier)
WEDNESDAY 23 JANUARY 2008

Candidates answer on the question paper.
Additional materials (enclosed):
None
Calculators may be used.
Additional materials: Pencil
Ruler (cm/mm)

Candidate
Surname

Centre
Number

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Do not write outside the box bordering each page.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page two.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE		
Qu.	Max	Mark
1	3	
2	4	
3	4	
4	3	
5	4	
6	5	
7	5	
8	4	
9	5	
10	5	
TOTAL	42	

This document consists of 16 printed pages.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

```
speed \(=\frac{\text { distance travelled }}{\text { time taken }}\)
momentum \(=\) mass \(\times\) velocity
change of momentum \(=\) resultant force \(\times\) time for which it acts
work done by a force \(=\) force \(\times\) distance moved by the force
change in energy \(=\) work done
change in GPE \(=\) weight \(\times\) vertical height difference
kinetic energy \(=\frac{1}{2} \times\) mass \(\times[\text { velocity }]^{2}\)
```


Electric Circuits

```
resistance \(=\frac{\text { voltage }}{\text { current }}\)
```

 \(\frac{V_{\mathrm{p}}}{V_{\mathrm{s}}}=\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}\)
 energy transferred $=$ power \times time
power $=$ potential difference \times current
efficiency $=\frac{\text { energy usefully transferred }}{\text { total energy supplied }} \times 100 \%$

The Wave Model of Radiation

```
wave speed \(=\) frequency \(\times\) wavelength
```

Answer all the questions.

1 Bobby watches a stage magician.
The magician throws a handful of powder into a flame. The flame turns green.
Bobby realises that the powder contains copper.
(a) How does Bobby know the powder contains copper?

Put ticks (\mathcal{J}) in the boxes next to the two best reasons.

It is a magic trick.
Many elements change the colour of the flame.
Stage magicians always use copper.
Copper conducts electricity.
An element always turns the flame the same colour.
Copper is cheap.

(b) Bobby uses a special instrument to look at the flame.

He sees a series of lines.

Put a ring around the best name for a series of lines like this.
amplitude frequency line spectrum wavelength

[^0]2 (a) Look at these diagrams of the Periodic Table.
Some elements are marked with an \mathbf{X}.
A

C

D

(i) Which diagram, A, B, C or D, shows a group of elements?
answer
(ii) Which diagram, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, shows a period of elements?
answer
(b) Which two letters below represent non-metals?

answer \qquad and \qquad

3 Jenny studies three elements, $\mathbf{L i}, \mathbf{N a}$ and \mathbf{K}.
She finds this information in a data booklet.

	melting point ${ }^{\circ} \mathrm{C}$	boiling point ${ }^{\circ} \mathrm{C}$
Li	180	1342
Na		883
K	63	

PERIODIC TABLE
(a) Suggest a melting point for Na .
answer
(b) Suggest a boiling point for \mathbf{K}.
answer
(c) Another data book gives the boiling point for Li as $1330^{\circ} \mathrm{C}$ instead of $1342^{\circ} \mathrm{C}$. Jenny thinks of some reasons for this.

Put a tick (\checkmark) in the box next to the best reason.

Boiling points increase each time they are measured.
The measurements were made with different amounts of Li .
It is difficult to measure such a high boiling point accurately.
The second book rounded the numbers to the nearest ten degrees.

\square
(d) Potassium reacts with chlorine gas to make potassium chloride.

What is the formula of potassium chloride?
[Total: 4]

4 Jenny fills in a table about the halogens at room temperature and pressure.
Use words from the lists below to complete the table.

solid	green
liquid	grey
gas	red/brown
	white
	yellow

name of element	state of element	colour of element
chlorine		
bromine		
iodine		

5 The diagram shows the forces acting on a helicopter in level flight.

(a) What is the direction of the resultant force on the helicopter?

Put a ring around the correct answer.
backwards
downwards
forwards
upwards
(b) What is the size of the resultant force on the helicopter?

Put a ring around the correct answer.
1 kN
2 kN
3 kN
5 kN
12 kN
(c) Which quantities will be increasing for the helicopter?

Put ticks (\mathcal{J}) in the boxes next to the two correct answers.

6 Paul drives a taxi in town.

\rightleftharpoons

(a) A journey of 3000 m takes him 400 s .

How does Paul calculate his average speed for the journey?
Put a ring around the correct answer.
$\frac{3000}{400} \quad 3000 \times 400 \quad \frac{400}{3000}$
(b) Here is a velocity-time graph for Paul's journey.

Write the correct letter, A, B, C, D, E or \mathbf{F}, in each box.

Stopped at traffic lights.
Moving at a steady top speed.
Slowing down at the end of the journey.

\square
(c) Paul wears a seat belt. He brakes suddenly at traffic lights.

Draw a straight line from the start of each sentence to its correct end.
start

Using the brakes of the car ...

The seatbelt in the car ...

The momentum of the car
end
... applies a counter force to Paul.
... transfers kinetic energy by heating.
... is reduced by friction between tyres and road.

Julie drops a brick down a deep well.

The brick falls through the air until it hits the water.
(a) Finish the sentences. Choose words from this list.
gravitational potential energy
kinetic energy
mass
volume
weight
work

The brick is pulled down by its \qquad .

As it falls, the brick loses \qquad
but gains
(b) The brick has a weight of 20 N . It falls for 4 s before it hits the water.

The momentum of the brick changes as it falls through the air.
How do you calculate the change in momentum?
Put a ring around the correct answer.
$\frac{20}{4}$
20×4
$\frac{4}{20}$
20
(c) The brick hits the water and slows down.

It now falls through the water at a steady speed.
Put a tick (\mathcal{J}) in the box next to the one correct explanation for this.

Friction transfers momentum out of the brick.
The brick has no weight when it is under water.
Friction transfers energy from the brick by heating.

8 Andrew draws a model to show osmosis.

(a) What does side B in the model represent?

Put a tick (\mathcal{J}) in the box next to the correct answer.

A concentrated solution.
A dilute solution.
Pure water.

(b) Why did Andrew include a partially permeable membrane in his model?

Put a tick (\checkmark) in the box next to the correct answer.

To stop glucose molecules and water molecules from passing through.
To stop glucose molecules from passing through.
To stop water molecules from passing through.
\square
\square
\square
(c) What happens to the water molecules?

Put a tick (\mathcal{J}) in the box next to the correct answer.

Water molecules move mostly from side \mathbf{A} to side \mathbf{B}.
Water molecules move mostly from side \mathbf{B} to side \mathbf{A}.

Water molecules move equally between side \mathbf{A} and side \mathbf{B}.
Water molecules do not move between side \mathbf{A} and side \mathbf{B}.
(d) What will happen when Andrew adds four more glucose molecules to side \mathbf{B} in his model? Put a tick (\mathcal{J}) in the box next to the correct answer.

Water molecules move mostly from side \mathbf{A} to side \mathbf{B}.
Water molecules move mostly from side \mathbf{B} to side \mathbf{A}.
Water molecules move equally between side \mathbf{A} and side \mathbf{B}.
Water molecules do not move between side \mathbf{A} and side \mathbf{B}.

9 This question is about enzymes.
(a) What are enzymes made of?

Put a ring around the correct answer.
carbohydrates lipids proteins
(b) Enzymes can speed up the breakdown of molecules.

Which of the following statements are true and which are false?
Write true or false in the box next to each statement.

Enzymes can make reactions go faster.

> true or false
\square
Enzymes will only work in test tubes.

Enzymes stop working at very high temperatures.

Enzymes work best at one particular temperature.

(c) Enzymes can speed up the breakdown of molecules.

The process involves a number of stages.
The stages are not drawn in the correct order.
A

B

C

D

Fill in the boxes to show the right order. The first one has been done for you.

C			

10 This question is about the kidneys.
(a) Here are some things that affect the amount of water in the body.

breathing	faeces	respiration
drinks	food	sweating

Which put water into the body?
Which take water out of the body?
Complete the table by writing the words in the correct boxes.
All of the words should be used.

water into the body	water out of the body

(b) Drinking large amounts of alcoholic drinks can cause dehydration.

Why does this happen?
Put a tick (\checkmark) in the box next to the correct answer.

(c) If someone uses the drug ecstasy they produce small amounts of very strong urine.

Draw one straight line from the correct change in the volume of urine to the correct change in its concentration caused by the drug ecstasy.

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

[^1]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

[^1]: The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

