GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE ADDITIONAL SCIENCE A

Unit 1 Modules B4 C4 P4
HIGHER TIER
THURSDAY 14 JUNE 2007
Afternoon

Calculators may be used.
Additional materials: Pencil

Candidate
Name

Centre
Number

Candidate
Number

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre Number and Candidate Number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- A list of physics equations is printed on page 2.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	3	
2	5	
3	6	
4	4	
5	5	
6	5	
7	6	
8	3	
9	3	
10	2	
TOTAL	42	

This document consists of $\mathbf{2 0}$ printed pages.

EQUATIONS

Useful Relationships

Explaining Motion

speed $=\frac{\text { distance travelled }}{\text { time taken }}$
momentum $=$ mass \times velocity
change of momentum $=$ resultant force \times time for which it acts
work done by a force $=$ force \times distance moved by the force
change in energy = work done
change in GPE $=$ weight \times vertical height difference
kinetic energy $=\frac{1}{2} \times$ mass $\times[\text { velocity }]^{2}$

Electric Circuits

resistance $=\frac{\text { voltage }}{\text { current }}$
$\frac{V_{\mathrm{p}}}{V_{\mathrm{S}}}=\frac{N_{\mathrm{p}}}{N_{\mathrm{S}}}$
energy transferred $=$ power \times time
power $=$ potential difference \times current
efficiency $=\frac{\text { energy usefully transferred }}{\text { total energy supplied }} \times 100 \%$
The Wave Motion of Radiation
wave speed $=$ frequency \times wavelength

Answer all the questions.
1 These diagrams show the arrangement of electrons in four atoms, A, B, C and D. Only the electrons in the outer shell are shown.

X $=$ an electron
A
B
C
D

Use the letters A, B, C and D to answer the following questions.
(a) Which atom is a Group 6 element?
(b) Which atom could be a chlorine atom?
(c) Which atom forms ions by losing one electron?

2 This question is about the reaction of lithium with water. Eve puts a small piece of lithium into some water. The water contains some pH indicator solution.
water and pH indicator solution

(a) This chart shows the colours of a pH indicator in acidic, neutral and alkaline solutions.

	acidic solution	neutral solution	alkaline solution
colour of indicator	red	green	blue

When lithium reacts with water, the colour of the pH indicator changes.
What are the colours of the pH indicator before and after the experiment?
colour before lithium is added \qquad
colour after lithium reacts.
(b) Eve sees bubbles of gas on the lithium.
(i) What is the name of the gas?

Put a ring around the correct answer.
carbon dioxide chlorine hydrogen oxygen
(ii) Give the name of the other product of the reaction between lithium and water.
(c) (i) The table shows some information about elements that are similar to lithium.

Complete the table.
Use the Periodic Table (on page 20) to help you.

name	symbol
potassium	
sodium	
	Rb

(ii) Use the Periodic Table to help you arrange the three elements in the table above, in order of reactivity.
most reactive \qquad
\qquad
least reactive

3 Liz puts a piece of hot lithium into a gas jar of chlorine.

(a) Liz writes equations for the reaction.

Complete the word equation and balance the symbol equation by filling in the boxes.

(b) During the reaction, chlorine atoms become chloride ions.
(i) Give the formula of a chloride ion.
(ii) What happens to the electron arrangement of a chlorine atom when it changes into a chloride ion?

Put ticks (\checkmark) in the correct boxes.

(c) At the end of the reaction, Liz notices that the gas jar contains a white solid. How can Liz test the solid to show that it is a lithium compound?

Put a tick (\checkmark) in the box which shows the best test for a lithium compound.
do a flame test
test solubility in water
see if it tarnishes in air
test electrical conductivity

[Total: 6]

4 This question is about a space shuttle taking off.

An image has been removed due to copyright restrictions.

Details:
a clipart-style illustration of a space shuttle taking off
(a) Complete the sentences.

Choose words from this list.

> constant
> downwards
> energy
> upwards
> weight

The direction of the exhaust gas momentum is \qquad
So the force it exerts on the shuttle is \qquad

The shuttle speeds up when this force is greater than its \qquad
(b) Here are three height-time graphs.

A

B

C

Which one shows the shuttle getting faster?

5 Jake tests the brakes of his car on a long stretch of straight, flat road.

An image has been removed due to copyright restrictions.

Details:
a clipart-style illustration of a car

The graph shows how his velocity changes with time as Jake slows down the car.

(a) The graph starts at the moment that Jake decides to stop the car.
(i) Here are some statements about the motion of the car shown in the graph.

Put a tick (\checkmark) in the box if it is true.
Put a cross (\mathbf{x}) in the box if it is false.
the brakes apply a force on the car throughout
the kinetic energy lost by the car is transferred by heating

work is done by the car brakes to slow the car down

the velocity of the car decreases steadily throughout

(ii) For how long were the brakes applied? Choose from the list.

0.75 s

3.75 s
4.50 s
5.00 s
answer S
(iii) The car has a mass of 800 kg .

How much momentum does the car lose as it stops?
momentum lost $=$ \qquad $\mathrm{kgm} / \mathrm{s}$
(b) Jake does the test again going up a hill. He finds that, for the same initial velocity, the car stops in less time.

Which statement is the best explanation for this?
A Gravity pulls the car onto the road, giving the tyres a better grip.
B The kinetic energy of the car decreases as it does work against gravity.
C The car does not need to lose as much momentum when going up the hill.
answer

6 Sammi enjoys making parachute jumps.

An image has been removed due

 to copyright restrictions.Details:
a clipart-style illustration of a parachutist with open parachute
(a) When the parachute is open, Sammi has a constant velocity of $8 \mathrm{~m} / \mathrm{s}$ in a downwards direction.
(i) Choose the one graph, A, B, C or D, which correctly shows her motion.

answer
(ii) Sammi has a mass of 60 kg . What is her kinetic energy as she falls at $8 \mathrm{~m} / \mathrm{s}$?

Put a ring around the correct answer.
$240 \mathrm{~J} 480 \mathrm{~J} \quad 1920 \mathrm{~J} \quad 38400 \mathrm{~J}$
(b) Sammi and her parachute have a total weight of 800 N .

Calculate the change of gravitational potential energy (GPE) when she drops through a height of 300 m .
change of GPE = J
(c) A loss of gravitational potential energy usually results in a gain of kinetic energy. This does not happen when Sammi falls by parachute.

Who has the best explanation for this?

answer

7 David draws three diagrams to show how kidneys work.

Some of the molecules are absorbed back into the blood and others are excreted in the urine.
(a) Complete the key for David's diagrams.

Choose from the list.
sugar
urea
water

(b) Where is urine stored in the human body?

Put a ring around the correct answer.
bladder kidney liver
(c) (i) Drugs can have a harmful effect on kidneys.

Complete the diagram to show the link between two different types of drug, ADH production and urine production.

Draw straight lines from each type of drug to its effect on ADH production and then to the effect on urine production.

type of drug

ADH production

reduced

urine production

smaller volume and less dilute
ecstasy
increased

alcohol

> stays the same
(ii) Which structure secretes ADH into the blood stream?

Put a ring around the correct structure.
hypothalamus
kidney
liver
pituitary gland

8 Jenny carries out an experiment to show the effect of temperature on the activity of the enzyme amylase.

She puts the same amounts of starch and amylase into three test tubes at three different temperatures.

The three temperatures are $20^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$.
After 5 minutes, Jenny takes a small sample of each mixture and adds a drop of iodine solution to test for starch.

Result of the experiment:

temperature ${ }^{\circ}$ C	starch present	starch absent
20		\checkmark
40		\checkmark
60	\checkmark	

(a) Jenny writes four different statements about her results.

Which of her statements are correct?
Put tick(s) (\checkmark) next to the correct box or boxes.
amylase works best at $60^{\circ} \mathrm{C}$

amylase was denatured at $20^{\circ} \mathrm{C}$

amylase was working at $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$

the active site of amylase changes shape at $60^{\circ} \mathrm{C}$

(b) At which temperature is the rate of collisions between amylase and starch molecules the highest?

9 The automatic control of internal body temperature is important in humans.
Finish the sentences by choosing the best words from the list. You may use words more than once.

> decreases hypothalamus increases pituitary gland
> skin
> stay the same
> move
> vasodilate
> vasoconstrict

Changes in the blood temperature are detected by receptors in the If the body core temperature is too high, the amount of sweat produced by the sweat glands \qquad
Such high temperatures also cause the blood vessels in the skin to \qquad As a result of these processes, the body temperature lowers because the rate of heat loss \qquad

10 Joe is doing an experiment to find out about the movement of water molecules across a membrane. He uses two solutions, A and B.

They contain different concentrations of sugar molecules and water molecules.
Joe draws two diagrams of the apparatus.
They show the heights of the two solutions at the start of the experiment and after 1 hour.

level at the start

level after 1 hour
(a) Here are statements about the difference in concentration of sugar in solutions \mathbf{A} and \mathbf{B}, at the start of the experiment.

Put a ring around the correct statement.
A greater than \mathbf{B}
B greater than A
A the same as \mathbf{B}
(b) Joe wanted to get the height of sugar solution \mathbf{B} down to its original level.

What should he do to solution \mathbf{A} ?
Put a tick (\checkmark) in the correct box.

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
The Periodic Table of the Elements

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.
The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

