GENERAL CERTIFICATE OF SECONDARY EDUCATION
 Unit 1 Modules B4 C4 P4

FOUNDATION TIER
THURSDAY 14 JUNE 2007

Calculators may be used.
Additional materials: Pencil

Centre
Number

Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre Number and Candidate Number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- A list of physics equations is printed on page 2.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	5	
2	5	
3	4	
4	5	
5	5	
6	4	
7	8	
8	3	
9	3	
TOTAL	42	

This document consists of $\mathbf{2 1}$ printed pages and $\mathbf{3}$ blank pages.

EQUATIONS

Useful Relationships

Explaining Motion

speed $=\frac{\text { distance travelled }}{\text { time taken }}$
momentum $=$ mass \times velocity
change of momentum $=$ resultant force \times time for which it acts
work done by a force $=$ force \times distance moved by the force
change in energy = work done
change in GPE $=$ weight \times vertical height difference
kinetic energy $=\frac{1}{2} \times$ mass $\times[\text { velocity }]^{2}$

Electric Circuits

resistance $=\frac{\text { voltage }}{\text { current }}$
$\frac{V_{\mathrm{p}}}{V_{\mathrm{s}}}=\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}$
energy transferred $=$ power \times time
power $=$ potential difference \times current
efficiency $=\frac{\text { energy usefully transferred }}{\text { total energy supplied }} \times 100 \%$

The Wave Motion of Radiation
wave speed $=$ frequency \times wavelength

BLANK PAGE

Question 1 starts on page 4

Answer all the questions.
1 Liz does an experiment using lithium and chlorine.
(a) Liz looks at the hazard labels for each chemical.

(i) What does the hazard symbol for each chemical mean? Choose from this list.

> flammable
> harmful
> oxidising
> toxic
hazard for lithium \qquad
hazard for chlorine. \qquad
(ii) Draw a straight line from each chemical to its correct safety precautions. chemical

do not breathe it in use a fume cupboard

chlorine gas

avoid splashes wear a lab coat

lithium

avoid skin contact wear gloves

(b) Liz puts a piece of hot lithium into a gas jar of chlorine.

Lithium reacts with chlorine to make lithium chloride.
Write a word equation for the reaction by filling in the boxes.

[Total: 5]

2 This table shows some information about the elements in Group 7 of the Periodic Table at room temperature.
(a) Complete the table by filling in the empty boxes.

		appearance	
element	formula	colour	state
chlorine	Cl_{2}		gas
bromine	Br_{2}	orange	
iodine		grey	solid

(b) Complete the sentences by putting a ring around the correct word.

Group 7 elements are all metals I non-metals.

Group 7 elements become more / less reactive down the group.
Group 7 elements all form positive I negative I neutral ions when they react.
(c) Chlorine atoms contain 17 electrons.

$$
\mathbf{X}=\text { an electron }
$$

This diagram shows the arrangement of electrons in a chlorine atom.
Fluorine atoms contain 9 electrons.
Complete the diagram to show the arrangement of electrons in a fluorine atom.

3 This question is about the reaction of lithium with water. Eve puts a small piece of lithium into some water. The water contains some pH indicator solution.

(a) This chart shows the colours of a pH indicator in acidic, neutral and alkaline solutions.

	acidic solution	neutral solution	alkaline solution
colour of indicator	red	green	blue

When lithium reacts with water, the colour of the pH indicator changes.
What are the colours of the pH indicator before and after the experiment?
colour before lithium is added \qquad
colour after lithium reacts
(b) Eve sees bubbles of gas on the lithium.
(i) What is the name of the gas?

Put a ring around the correct answer.

> carbon dioxide chlorine hydrogen oxygen
(ii) Give the name of the other product of the reaction between lithium and water.
(c) The table shows some information about elements that are similar to lithium. Complete the table.
Use the Periodic Table (on page 24) to help you.

name	symbol
potassium	
sodium	
	Rb

4 Jake tests the brakes of his car on a long, straight, flat road.

An image has been removed due to copyright restrictions.

Details:
a clipart-style illustration of a car

The graph shows how his speed changes with time when the brakes are applied.

(a) The graph starts at the time when Jake decides to start braking.
(i) How fast is Jake going when he decides to brake?
metres per second
(ii) At what time does the car stop moving?
\qquad
(b) Finish the sentences. Choose words from this list.
energy
force
heat
work
mass

The momentum of the car is reduced by the \qquad of the brakes.

The \qquad done by the brakes slows the car down.
(c) Which arrow, A, B, C or D, shows the force which slows down the car? Draw a ring around the correct arrow.

5 Sammi enjoys making parachute jumps.

An image has been removed due to copyright restrictions.

Details:
a clipart-style illustration of a parachutist with open parachute
(a) Sammi makes a parachute jump and lands safely on the ground. The sentences describe how her velocity changes.
They are not in the correct order.
A It increases.
B It starts at zero.
C It becomes zero.
D It decreases to a constant value.

Fill in the boxes to show the correct order. The first one has been done for you.

(b) When the parachute is open, Sammi falls at a constant velocity.

Here are five statements about Sammi when the parachute is open.
A Her resultant force is zero.
B She is gaining momentum.
C She is losing kinetic energy.
D Her resultant force is upwards.
E She is losing gravitational potential energy.

Which two statements are correct if Sammi has a constant velocity?
and
(c) Sammi drops through a height of 600 m in a time of 30 s .

Which is the correct calculation of her average speed? Put a ring around the correct answer.

$$
\begin{aligned}
& \text { speed }=\frac{600}{30}=20 \mathrm{~m} / \mathrm{s} \\
& \text { speed }=600 \times 30=12000 \mathrm{~m} / \mathrm{s} \\
& \text { speed }=\frac{30}{600}=0.05 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(d) When Sammi lands on the ground, she bends her knees.

Why does Sammi bend her knees?
Put ticks (\checkmark) in the correct boxes.
this allows her to land more quickly
this reduces the force on her when she lands
this provides an upwards force to slow her down

this increases the time taken for the impact with the ground \square

6 This question is about a space shuttle taking off.

An image has been removed due to copyright restrictions.

Details:
a clipart-style illustration of a space shuttle taking off
(a) Complete the sentences.

Choose words from this list.

> constant
> downwards
> energy
> upwards
> weight

The direction of the exhaust gas momentum is \qquad

So the force it exerts on the shuttle is \qquad .

The shuttle speeds up when this force is greater than its \qquad
(b) Here are three height-time graphs.

Which one shows the shuttle getting faster?

7 Susan is planning to visit a very hot part of the world. She must be careful not to suffer from heatstroke.
(a) The control of Susan's internal body temperature is in three stages.

A detects a stimulus
B processes information
C produces a response
(i) Which stage, A, B, or C, involves a receptor?
answer
(ii) Which stage, A, B, or C, involves an effector?

> answer
(b) Which two organs in Susan's body contain temperature receptors?

Put a tick (\checkmark) in the two correct boxes.
brain

heart

liver

skin

(c) Small increases in Susan's temperature can bring about changes in her cells.

Complete the table to show the effect of temperature increase on the cell.
Put a tick (\checkmark) in one box in each row.

cell activity	increases	decreases	stays the same
speed of reaction			
energy of collisions between molecules			
number of molecules in the cell			

(d) The diagram shows possible changes which take place in Susan's body if she develops heatstroke.

Draw straight lines to link up the correct boxes.
The first link has been drawn for you.

[Total: 8]

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

8 (a) David draws three diagrams to show how kidneys work.

Some of the molecules are absorbed back into the blood and others are excreted in the urine.

Complete the key for David's diagrams.
Choose from the list.

> sugar
> urea
> water

key
0
$=\ldots \ldots \ldots \ldots \ldots \ldots$.
0
$=\ldots \ldots \ldots \ldots \ldots \ldots$.
$\theta=\ldots \ldots \ldots \ldots \ldots .$.

(b) Where is urine stored in the human body?

Put a ring around the correct answer.
bladder kidney liver

9 Joe is doing an experiment to find out about the movement of water molecules across a membrane. He uses two solutions, A and B.

They contain different concentrations of sugar molecules and water molecules.
Joe draws two diagrams of the apparatus.
They show the heights of the two solutions at the start of the experiment and after 1 hour.

level at the start

level after 1 hour
(a) Here are statements about the difference in concentration of sugar in solutions \mathbf{A} and \mathbf{B}, at the start of the experiment.

Put a ring around the correct statement.
A greater than B
B greater than A
A the same as B
(b) The choice of membrane used in Joe's experiment was important.

What is the best way to describe this membrane?
Put a tick (\checkmark) in the correct box.

partially permeable \square
(c) Joe wanted to get the height of sugar solution B down to its original level.

What should he do to solution A?
Put a tick (\checkmark) in the correct box.
add more sugar

add more water

add more solution

remove some solution

END OF QUESTION PAPER

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity
OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
The Periodic Table of the Elements

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.
The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

