Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Secondary Education Higher Tier June 2015

AS1HP

Additional Science Unit 5

Tuesday 12 May 2015 1.30 pm to 3.00 pm

For this paper you must have:

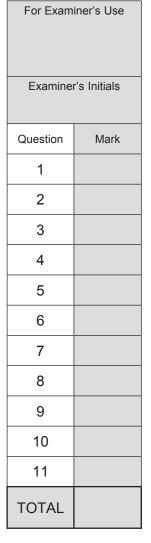
- a ruler
- a calculator
- the Chemistry Data Sheet and Physics Equations Sheet Booklet (enclosed).

Time allowed

1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

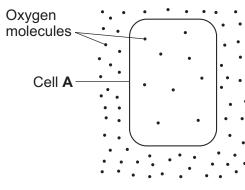

Information

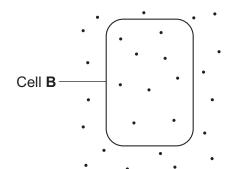
- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- Question 1(b) should be answered in continuous prose.
 - In this question you will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

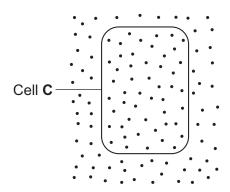
Advice

• In all calculations, show clearly how you work out your answer.

Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					




Answer all questions in the spaces provided.


Biology Questions

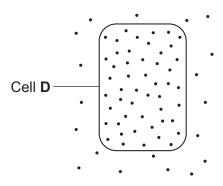

1 (a) Figure 1 shows four cells, A, B, C and D. Each cell is surrounded by oxygen molecules.Oxygen molecules can move into cells or out of cells.

Figure 1

1 (a) (i) Name the process by which oxygen moves into cells or out of cells.

[1 mark]

1 (a) (ii) Into which cell, A, B, C or D, will oxygen move the fastest?

[1 mark]

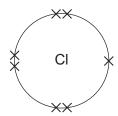
Cell

1 (a) (iii) Give the reason for your answer to part (a)(ii).

[1 mark]

Why do cells need oxygen? [1 mark]
In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.
The cells in large plants and animals are organised into tissues, organs and organ systems.
Describe each level of organisation of cells and give examples of these in plants and animals.
Do not refer to the parts of cells. [6 marks]
Extra space
LATO OPOCO

Turn over ▶



Chemistry Questions

2 This question is about chlorine and compounds of chlorine.

Figure 2 represents the outer shell electrons in an atom of chlorine.

Figure 2

2 (a) (i) A chlorine atom contains three different types of particle.

Complete **Table 1** to show the relative mass of each particle.

[2 marks]

Table 1

Name of particle	Relative mass of particle
proton	
neutron	1
electron	

Complete the sentence.

[1 mark]

Atoms of chlorine with different numbers of neutrons are called

2 (a) (iii)	Calculate	the number	r of neu	ıtrons in	an a	atom o	f %Cl
---------	------	-----------	------------	----------	-----------	------	--------	-------

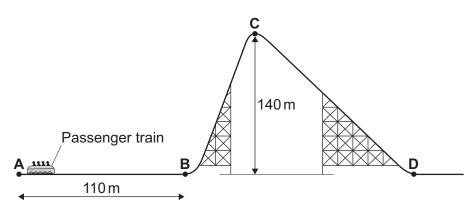
[1 mark]

.....

Number of neutrons =

2 (b)	Two chlorine atoms combine to form a chlorine molecule.		
2 (b) (i)	Name the type of bonding in a chlorine molecule. [1 mark]		
2 (b) (ii)	Complete Figure 3 to show the arrangement of the outer shell electrons in a chlorine molecule. [2 marks]		
	Figure 3		
	CI CI		
2 (c)	Chlorine reacts with sodium to produce sodium chloride.		
2 (c) (i)	Write the word equation for the reaction to produce sodium chloride. [1 mark]		
2 (c) (ii)	Sodium chloride has the formula NaCl.		
	How does this formula show that sodium chloride is a compound? [1 mark]		

Turn over for the next question


Turn over ▶

Physics Questions

Figure 4 shows the first part of a roller-coaster ride.

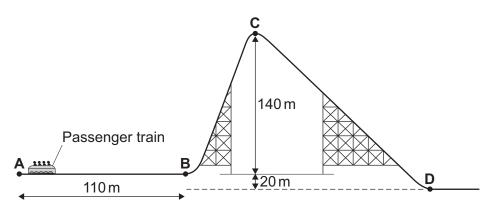
Figure 4

- 3 (a) The passenger train accelerates from point A to point B, a distance of 110 m.
 A constant force of 141 kN acts to accelerate the passenger train between point A and point B.
- **3 (a) (i)** Calculate the work done to accelerate the passenger train between point **A** and point **B**. [3 marks]

Use the correct equation from the Physics Equations Sheet. Give the unit.

3 (a) (ii) Use the correct answer from the box to complete the sentence.

[1 mark]


chemical gravitational potential kinetic	
--	--

3 (b) (i)	From point B to point C , shown in Figure 4 , the passenger train climbs a vertical height of 140 m.
	Calculate the increase in gravitational potential energy of the passenger train as it climbs from point B to point C .
	[2 marks]
	The mass of the passenger train is 8325 kg.
	The gravitational field strength is 10 N/kg.
	Use the correct equation from the Physics Equations Sheet.
	Increase in gravitational potential energy =
3 (b) (ii)	The passenger train stops at point C and then falls, due to gravity, towards point D .
	State the maximum increase in kinetic energy of the passenger train as it moves from point C to point D .
	[1 mark]
	Maximum increase in kinetic energy =
3 (b) (iii)	The actual increase in kinetic energy of the passenger train as it falls from point C to point D is less than your answer to part (b)(ii) .
	Why?
	[1 mark]
	Question 3 continues on the next page

3 (c) Figure **5** shows a different roller-coaster design.

Figure 5

What effect will the change in design have on the velocity of the passenger train at point ${\bf D}$?

[1	mark]
[1	mark]
-	-

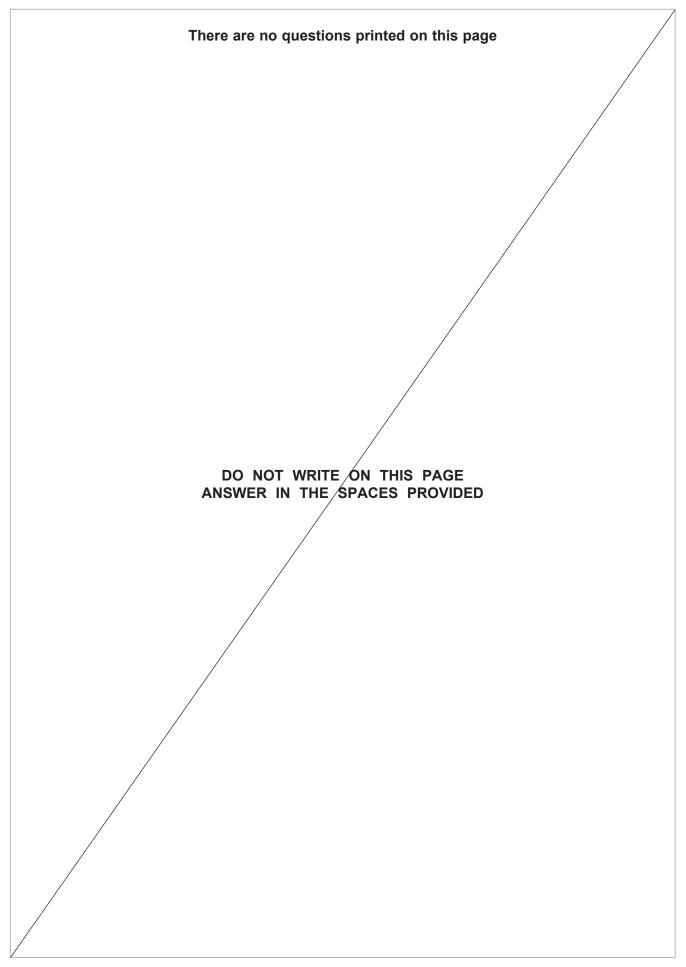
3 (d) On many roller-coaster rides the passengers feel the effect of large accelerations on their bodies.

Table 2 shows some of the effects that can occur.

Table 2

Acceleration in m/s ²	Possible effect
10	Feeling of heaviness
20	Difficulty in moving arms and legs
30	Limited eyesight
40	Unconsciousness

In the United Kingdom there is no legal limit on the maximum acceleration a passenger should experience during a roller-coaster ride.


Do you think there should be a legal limit?	
Give a reason for your answer.	[1 mark]

10

Turn over for the next question

Biology Questions

4	Croon pla	nto	liabt		ماده	th air	01440	food in	46.0	nr0000	of photos	. unthonio
4	Green pla	าแร นระ	IIGHL	energy u	Hilake	uieii	OWII	1000 111	uie	process (טו טווטנטנ	VIIIIIESIS.

4	(a)	(i)	Complete	the word	equation	for pho	tosynthesis.
---	-----	-----	----------	----------	----------	---------	--------------

[2 marks]

carbon dioxide + water \longrightarrow +

4 (a) (ii) One product of photosynthesis can be used by plants to make other useful substances.

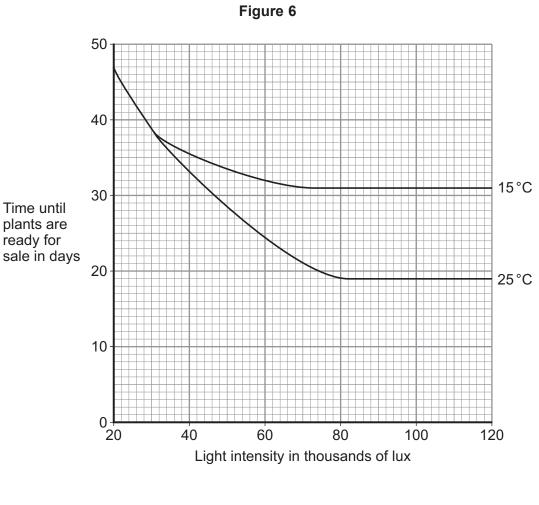
Complete **Table 3** to name these substances.

[3 marks]

Table 3

Information about the substance	Name of substance
Used to strengthen cell walls	
Used for storage	
Made using nitrate ions	

4 (a) (iii)	Name one tissue used to transport substances around a plant.	
		[1 mark


4 (b) Marigold plants can be bought from garden centres in the spring. The owner of a garden centre needs the plants to grow as quickly as possible.

Scientists investigated the effect of changing the light intensity and the temperature in the greenhouses where marigolds are grown.

Question 4 continues on the next page

Figure 6 shows the results.

4 (b) (i)	The rate of photosynthesis is affected by limiting factors. What is meant by 'limiting factors'?	
		[1 mark]

.....

4 (b) (ii) What was the lowest light intensity to produce the fastest growth rate of the marigold plants at 25 °C?

Use information from **Figure 6**.

[1 mark]

Light intensity = thousand lux

12

4 (b) (iii)	Suggest why the owners of the garden centre might decide not to use 25 °C and the light intensity you gave in part (b)(ii) , when growing marigolds for sale in greenhouses. [1 mark]
4 (b) (iv)	The data on the graph was collected at a carbon dioxide concentration of 0.04%.
	On Figure 6 , draw a line to show what you would expect to happen if the marigolds were grown at 25 °C and a carbon dioxide concentration of 0.4%.
	Justify where you have drawn your line. [3 marks]

Turn over for the next question

5 For 7 days students investigated changes in the population of yeast cells in a flask containing sugar solution.

The students used a counting chamber to estimate the number of the yeast cells in the sugar solution each day.

A counting chamber has a grid 1 mm × 1 mm and has a depth of 0.01 mm.

Four days after the start of the investigation, a sample was put into the counting chamber.

Figure 7 shows the view of the counting chamber through a microscope.

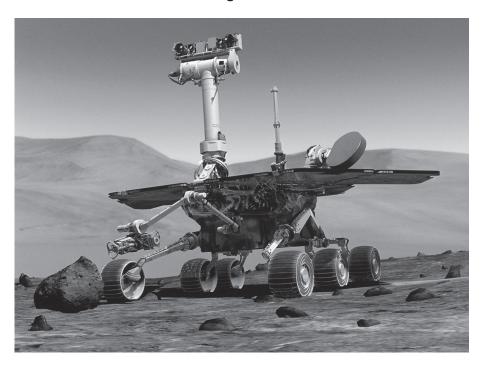
5 (a) (i) The students decided to:

- include in the count all the yeast cells partly inside the upper and left sides of the grid
- **not** count all the yeast cells partly inside the lower and right sides of the grid.

Suggest a different method of overcoming the problem of yeast cells partly inside the grid.

[1	mark]

5 (a) (ii)	The number of yeast cells per mm ³ of solution can be found using the formula:								
	Number = $\frac{\text{actual number counted}}{\text{volume of liquid in mm}^3}$								
	Using the students' method, calculate the number of the yeast cells per mm ³ of solution. Show clearly how you work out your answer.								
	[3 marks]								
	Number of year	st cells	per mm	³ of solu	ution = .				
5 (b)	Table 4 shows the results	collect	ed by th	ie stude	nts.				
			Table	4					
	Time in days	0	1	2	3	4	5	6	7
	Number of yeast cells per mm ³ of solution	11	44	176	704		11 200	2100	0
5 (b) (i)	Describe the pattern of incand day 3.	crease i	n the po	opulatio	n of yea	ıst cells	between		
								_	marks]
5 (b) (ii)	Suggest two possible reasafter day 5.	sons fo	r the rap	oid decr	ease in	the pop	oulation of		cells marks]
	1								
	2								


Chemistry Questions

6 Space probes are used to investigate the atmosphere of Mars.

95.3% of the atmosphere of Mars is carbon dioxide.

Figure 8 shows a space probe.

Figure 8

б (а)	known as GC-MS.	method
	GC-MS identifies substances very quickly.	
	Give one other advantage of using GC-MS to identify substances.	[1 mark]

(b)	Describe how a gas chromatography column separates the substances in a mixture. [2 marks]
(c)	Figure 9 shows part of the results obtained when GC-MS was used to identify substances in a mixture. The peak labelled A is the molecular ion peak for carbon dioxide.
	Figure 9
	120
	100
	Relative 60
	intensity 60
	40
	20
	10 20 30 40 50 Mass to charge ratio
	What conclusion about carbon dioxide can be made from the molecular ion peak in Figure 9 ?
	[2 marks]

Question 6 continues on the next page

6 (d)	Carbon dioxide is a simple molecule.
6 (d) (i)	Explain why simple molecules have low melting and boiling points.
	[2 marks]
6 (d) (ii)	Substances made of simple molecules do not conduct electricity at room temperature.
	Why? [1 mark]

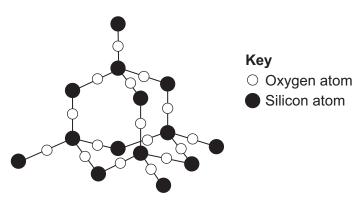
7 Figure 10 shows a tennis racket.

Figure 10

7 (a) The properties of some of the materials used to make tennis racket frames are shown in **Table 5**.

Table 5

Material	Density in g/cm ³	Relative strength	
Wood	0.71	0.103	
Carbon fibre	2.0	3.0	
Carbon nanotube	1.5	60	

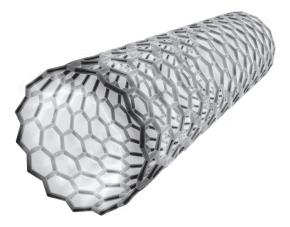

Use the information in Table 5 to evaluate the use of the materials in tennis racket frames.	
[3 ma	arks]

Question 7 continues on the next page

7 (b) Some carbon fibre rackets are made with nano-sized silicon dioxide crystals in the frame. The structure of silicon dioxide (SiO_2) is shown in **Figure 11**.

Figure 11

[3 marks]



8

7 (c) Some tennis rackets are made with carbon nanotubes in the frame.

Figure 12 shows the structure of a carbon nanotube.

Figure 12

Use Figure 12 to give one similarity and one difference between the structure of a carbon nanotube and the structure of graphite.

[2 marks]

Turn over for the next question

8 Rubies are used in jewellery.

8 (a) Rubies are mainly aluminium oxide (Al_2O_3) .

The relative formula mass (M_r) of aluminium oxide is 102.

Relative atomic masses (A_r): Al = 27; O = 16

What is the percentage of aluminium in aluminium oxide?

Draw a ring around the correct answer.

[1 mark]

16% 26% 42% 53%

5

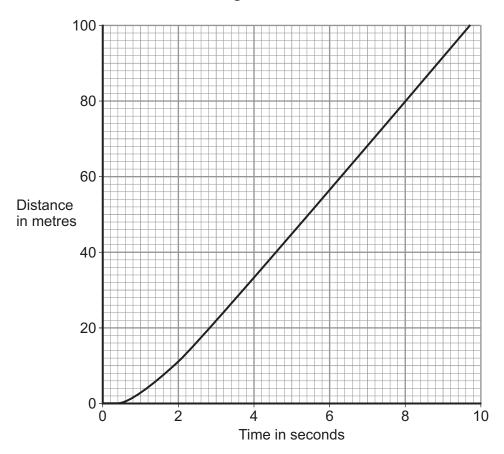
8 (b)	Synthetic rubies are coloured red by an oxide of chromium.
	A sample of the oxide of chromium contains 13 g of chromium and 24 g of oxygen.
	Relative atomic masses (A_r): Cr = 52; O = 16
	Calculate the empirical formula of this oxide of chromium.
	You must show your working in your answer.
	[4 marks]

Turn over for the next question

Physics Questions

9 Figure 13 shows a sprinter on the starting blocks just before the start of a 100 m race.

Figure 13


9 (a) (i)	The starting gun is fired.	
	The sprinter accelerates from rest at 4.8 m/s ² for 2.5 s.	
	Calculate the velocity of the sprinter after 2.5 s.	[2 marks]
	Use the correct equation from the Physics Equations Sheet.	
	Velocity =	m/s

9 (a) (ii) Figure 14 shows the distance—time graph of a sprinter.

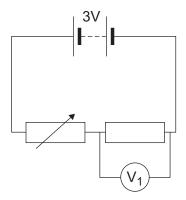
The graph starts from when the gun is fired.

Figure 14

Figure 14 shows that the sprinter does not move until 0.5 seconds after the gun has been fired.

	Suggest why.	[1 mark]
9 (a) (iii)	What does the gradient of the graph in Figure 14 represent?	[1 mark]
	Question 9 continues on the next page	

9 (b)	To acce	lerate at 4.8 m/s ² ,	the sprinter produces	a resultant force of	450 N.
	Calculat	te the mass of the	sprinter.		[3 marks]
	Use the	correct equation f	rom the Physics Equa	ations Sheet.	[e mame]
	Give you	ur answer to two s	significant figures.		
				Mass =	kg
				IVIA55 –	ку
9 (c)		shows the 100 m eed during each ra	sprint world record tirace.	mes from four differe	nt years and the
			Table 6		
		Year of the race	Wind speed in m/s	World record time in seconds	
		1964	1.3	10.06	
		1988	1.1	9.92	
		1999	0.1	9.79	
		2009	0.0	9.58	
	The data	a in Table 6 sugge	ests that there is a par	ttern between wind s	speed and the
		cord time for 100 i			
9 (c) (i)	Describe	e the pattern sugg	ested by the data.		[1 mark]



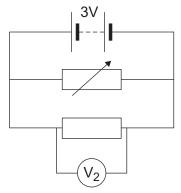
9 (c) (ii)	It is not possible to be certain that there is a relationship between the wind speed and the world record time.
	Suggest one reason why. [1 mark]
	Turn over for the next question

- In an electrical circuit, resistors may be connected in series or in parallel.
- **10 (a)** Figure **15** shows a variable resistor and a fixed resistor connected in a circuit in series.

Figure 15

The resistance of the variable resistor in **Figure 15** is increased.

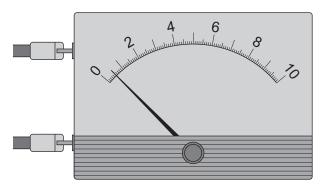
What is the effect, if any, on the reading on voltmeter V_1 ?


[1 mark]

Give one reason for your answer.

[1 mark]

10 (b) Figure 16 shows a variable resistor and a fixed resistor connected in a circuit in parallel.


Figure 16

	The resistance of the variable resistor in Figure 16 is increased.	
	What is the effect, if any, on the reading on voltmeter $\mathbf{V_2}$? [1 mar	'k]
	Give one reason for your answer. [1 mar	·k]
10 (c)	The circuit shown in Figure 15 was disconnected. Figure 17 shows the voltmeter after the circuit was disconnected.	er

Figure 17

What type of error is shown by the voltmeter in Figure 17?

[1 mark]

Turn over for the next question

Turn over ▶

11 Figure 18 shows an astronaut walking on the Moon.

Figure 18

How does the amount of force needed to lift a mass on the Moon compare with the amount of force needed to lift the same mass on the Earth?

[2 marks]

Give the reason for your answer.

The same mass on the Moon compare with the amount of the Earth?

[2 marks]

The same mass on the Moon compare with the amount of the Earth?

[2 marks]

The gravitational field strength on the Moon is less than it is on the Earth.

11 (a) (i)

11 (b)	When an astronaut walks on the Moon, a negative electrostatic charge builds up on the astronaut's boots.
	Explain why. [3 marks]

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Acknowledgement of copyright-holders and publishers

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements in future papers if notified.

Question 6, Figure 8: Mars Rover © Purestock/Alamy

Question 8: Ruby © Thinkstock

Question 11, Figure 18: Astronaut on moon © Getty Images

Copyright © 2015 AQA and its licensors. All rights reserved.

