Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Secondary Education Higher Tier June 2014

Additional Science Unit 5

Tuesday 13 May 2014 9.00 am to 10.30 am

For this paper you must have:

- a ruler
- a calculator
- the Chemistry Data Sheet and Physics Equations Sheet Booklet (enclosed).

Time allowed

1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- Question 3 should be answered in continuous prose.
 - In this question you will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Advice

• In all calculations, show clearly how you work out your answer.

ſ
ı
ı
ı
ı
ı
ı
ı
ŀ
ı
ı
ı
ı
ŀ
ı
ı
ſ
ı
ŀ
1

AS1HP

1	
2	
3	
4	

Question

5

For Examiner's Use

Examiner's Initials

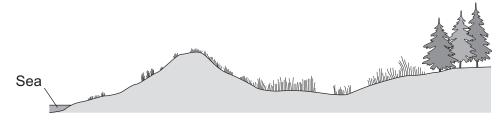
Mark

6	
7	
8	
0	

10	
11	
12	

13

Answer all questions in the spaces provided.


Biology Questions

A group of students investigated the distribution of plants living in a sand dune habitat next to a sea shore.

The students also collected information about some physical factors in the habitat.

Figure 1 shows a diagram of the sand dunes and the students' results. The bars show where each plant species was found.

Figure 1

Plant species

· idiii opooioo					
Sea rocket					
Marram grass					
Red fescue					
Rush					
Creeping willow					
Buttercup					
Orchid					
Pine tree					

Physical factors

% light intensity at ground level	98	92	98	88	85	82	93	80	52	27
% of water in soil	10	8	2	5	10	45	56	23	26	22

1 (a)	Describe how the students could have collected the data for the plant species.				
	[4 marks]				

1 (b)	Use Figure 1 to answer these questions.	
1 (b) (i)	Which plant species has no competitors in any part of the habitat?	[1 mark]
1 (b) (ii)	Which plant species lives in the driest conditions in the habitat?	[1 mark]
1 (b) (iii)	The further away from the sea, the older the dune habitat becomes.	
	Different numbers of species of plants grow in different parts of the dune habit	
	Describe how the age of the dune habitat affects the number of different spectrum sampled.	[2 marks]
1 (c)	Only a few other plants can grow in the area where the pine trees grow.	
	Explain why.	[2 marks]

Turn over ▶

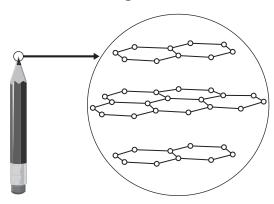
10

Chemistry Questions

2 Ammonium chloride is used to flavour sweets.

2 (a)	Ammonium chloride is the product of the reaction between ammonia and hydrogen chloride.
	The reaction is reversible.
	Write a word equation for the reaction. Include the symbol for a reversible reaction. [2 marks]
2 (b) (i)	A food scientist reacted 34 g of ammonia with 73 g of hydrogen chloride.
2 (b) (i)	
	Calculate the maximum mass of ammonium chloride that the food scientist could produce.
	[1 mark]
	Maximum mass g
2 (b) (ii)	At the end of the reaction, the food scientist obtained a lower yield of ammonium chloride than expected.
	Give one reason why. [1 mark]

2 (b) (iii)	The mass of ammonium chloride the food scientist obtained was 96 g.								
	Calculate the percentage yield for this reaction. [2 marks]								
	Percentage yield %	_							



In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Graphite is used in pencils and as a lubricant to reduce friction in machines.

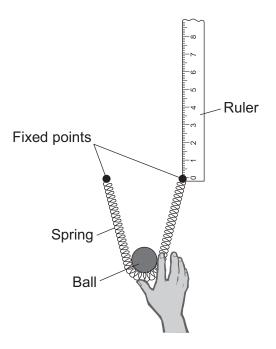
Figure 2 shows the structure of graphite.

Figure 2

- Describe the structure of graphite.
- State the properties of graphite.

 Explain why the structure of graphite gives graphite these properties. 	[6 marks]

.....

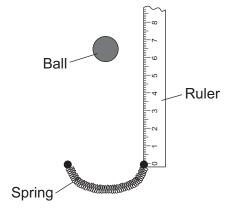

Physics Questions

4 Some students are investigating a catapult.

The catapult has a spring attached to two fixed points, as shown in Figure 3.

The spring is pulled down and stretched. It is then released so that the catapult fires a ball into the air.

Figure 3



4 (a)	Suggest one safety precaution the students should take when using the catapu	ılt. [1 mark]
4 (b)	What type of energy is stored in the stretched spring?	
		[1 mark]

4 (c) The students stretch the spring by different amounts and measure the height the ball reaches each time. **Figure 4** shows the ball after it has been fired into the air.

Figure 4

4 (c) (i) Suggest two sources of error when measuring the height the ball reaches.

[2 marks]

1

2

4 (c) (ii) The ball is fired into the air and reaches a height of 1.8 metres.

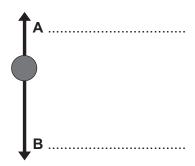
The mass of the ball is 20 g.

The gravitational field strength is 10 N/kg.

Calculate the gravitational potential energy gained by the ball and give the unit.

Use the correct equation from the Physics Equations Sheet.

[3 marks]


.....

Energy = Unit

4 (d) After reaching a maximum height, the ball accelerates towards the ground.

Figure 5 shows the two forces acting on the ball as it accelerates.

4 (d) (i) Label the forces A and B, on Figure 5.

[2 marks]

4 (d) (ii) Draw a ring around the correct answer to complete the sentence.

[1 mark]

As the ball accelerates, its gravitational potential energy decreases

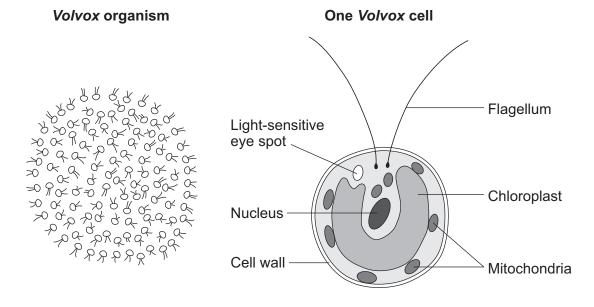
and its kinetic energy

increases.

stays the same.

decreases.

Turn over for the next question



Biology Questions

Volvox is a small organism found in ponds.
 Each Volvox organism is a ball of as many as 50 000 cells.

Figure 6 shows a Volvox organism and one Volvox cell.

Figure 6

5 (a) Volvox was discovered in 1700. In 1700, some scientists thought Volvox was a plant but other scientists thought Volvox was an animal.

Use evidence from Figure 6 to answer these questions.

5 (a) (I)	Suggest two reasons why some scientists in 1700 thought <i>volvox</i> was a plant. [2 marks	\$]

6

5 (a) (ii)	Suggest one reason why some scientists in 1700 thought <i>Volvox</i> was an anim	al. [1 mark]
5 (a) (iii)	Volvox is made of many cells.	
	Why is the Volvox organism not described as multicellular?	[1 mark]
5 (b)	During the day, <i>Volvox</i> moves up and down in the water.	
	Explain how Volvox can move.	[2 marks]

Turn over for the next question

6	New Zealand pygmy-weed is a fast growing plant which lives in ponds.
	Pond water surface
	New Zealand pygmy-weed
	Pygmy-weed has spread to ponds in the countryside and is causing the death of native pond plants.
	Native pond plants only grow in spring and summer and have no leaves at other times of the year. Pygmy-weed grows all year round.
	Wild animals feed on pygmy-weed and on native plants.
	Scientists are investigating ways of getting rid of pygmy-weed in ponds. In one investigation a non-poisonous black dye is added to pond water in early autumn. This makes the water black. The dye breaks down after about 4 months.
	Evaluate the use of the black dye to kill the pygmy-weed.
	In your evaluation: • explain why using the black dye in autumn kills pygmy-weed but does not kill native
	 pond plants suggest any problems to the environment that may result from using the black dye
	 decide whether or not the dye should be used and justify your decision. [5 marks]

Turn over for the next question	
ram over for the next question	

7	Soluble food is absorbed in the digestive system.
7 (a)	The digestive system contains muscular tissue and glandular tissue.
7 (a) (i)	Describe why muscular tissue is important in the digestive system. [2 marks]
7 (a) (ii)	Describe why glandular tissue is important in the digestive system. [2 marks]
7 (b)	A person eats a meal. The food mixture changes as it passes through the digestive system.
	Table 1 shows the percentage of water in the food mixture as the food mixture moves through different parts of the digestive system.

Table 1

Part of the digestive system	Percentage of water in the food mixture
(Before food is eaten)	56
Mouth	62
Stomach	66
Beginning of small intestine	70
End of small intestine	85
Large intestine	50

7 (b) (i)	Suggest reasons for the increase in the percentage of water in the food mixture as it moves through the mouth, stomach and the beginning of the small intestine. [3 marks]
7 (b) (ii)	Suggest one reason for the increase in the percentage of water in the food mixture as it moves along the small intestine. [1 mark]
7 (b) (iii)	Suggest one reason for the decrease in the percentage of water when the food mixture is in the large intestine. [1 mark]

Chemistry Questions		
8 (a)	Chlorine contains two different isotopes, $^{35}_{17}\text{Cl}$ and $^{37}_{17}\text{Cl}$	
	What is meant by isotopes?	
	Refer to the number of particles in the chlorine atoms to help you answer the question. [2 marks]	
8 (b) (i)	Use the Chemistry Data Sheet to find the relative atomic mass of chlorine. [1 mark]	
	Complete the sentence.	
	The relative atomic mass of chlorine is	
8 (b) (ii)	Why is the relative atomic mass of chlorine not the same as the mass number of either isotope? [1 mark]	

1

9 There are different types of poly(ethene).

Different types of poly(ethene) are used to make different products.

Supermarket plastic bag

Garden chair

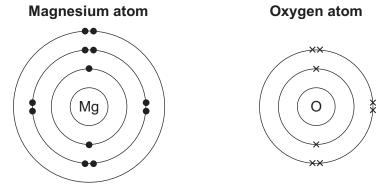
Table 2 gives information about two types of poly(ethene), LD poly(ethene) and HD poly(ethene).

Table 2

Property	LD poly(ethene)	HD poly(ethene)
Density in g/cm ³	0.92	0.95
Flexibility	Very flexible	Rigid
Relative strength	1	2.7
Melting point in °C	98	120

9 (a)	Use the information given in Table 2 to explain why LD poly(ethene) is used to make plastic bags, but HD poly(ethene) is used to make garden chairs.
	[2 marks]

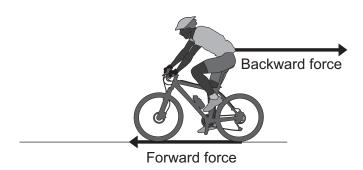
9 (b) (i)	How does the information given in Table 2 show that poly(ethene) is a thermosoftening polymer, not a thermosetting polymer? [1 mark]
9 (b) (ii)	Describe in terms of intermolecular forces why poly(ethene) is a thermosoftening polymer. [2 marks]
9 (c)	Give two reasons why LD poly(ethene) and HD poly(ethene) have different properties.
	[2 marks]


10 Magnesium is used in fireworks.

Magnesium reacts with oxygen to produce magnesium oxide.

10 (a) Figure 7 shows the electronic structure of a magnesium atom and of an oxygen atom.

Figure 7


	Describe, as fully as you can, what happens to the atoms when magnesium reacts with oxygen to produce magnesium oxide.
	[4 marks]
10 (b)	The melting point of magnesium oxide is 2852 °C.
	Explain why magnesium oxide has a high melting point. [3 marks]

Physics Questions

- 11 The body position of a cyclist affects his velocity.
- 11 (a) Figure 8 shows the forces acting on a cyclist at a constant velocity.

Figure 8

11 (a) (i)	What is the main cause of the backward force?	[1 mark
11 (a) (ii)	Complete the sentence.	[1 mark
	At a constant velocity the resultant force on the cyclist is	
11 (b)	The cyclist changes to the body position shown in Figure 9 . He pedals with	the same

Figure 9

force as in Figure 8.

Describe and explain how the motion of the cyclist changes as his body position changes.	
[3 marks]	
The cyclist accelerates at a constant rate of 2.0 m/s ² from 3.0 m/s to 18.0 m/s.	
Calculate the time taken for the acceleration.	
Use the correct equation from the Physics Equations Sheet. [2 marks]	
Time = seconds	
Suggest two factors, other than body position, that would affect the velocity of the cyclist. [2 marks]	
	Г
	The cyclist accelerates at a constant rate of 2.0 m/s² from 3.0 m/s to 18.0 m/s. Calculate the time taken for the acceleration. Use the correct equation from the Physics Equations Sheet. [2 marks] Time =

A light meter is used to check the light levels during a cricket match.

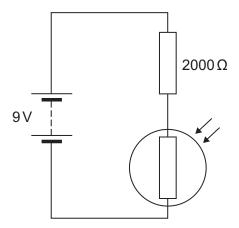

Figure 10 shows a cricket umpire using a light meter.

Figure 10

12 (a) Some light meters use a light-dependent resistor (LDR). Figure 11 shows a circuit in a light meter.

Figure 11

12 (a) (i)	What two measurements are needed to determine the resistance of the LDR? [2 marks]
	Measurement 1
	Measurement 2
12 (a) (ii)	What will happen to the current in the circuit if the resistance of the LDR increases? [1 mark]

12 (b) (i) Table 3 shows the resistance of the LDR at different light levels.

Table 3

Light level in lux	Resistance in ohms
0.1	250 000
1	50 000
10	10 000
100	2 000
1000	400

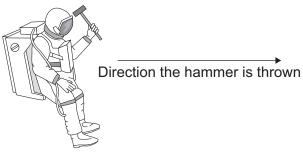
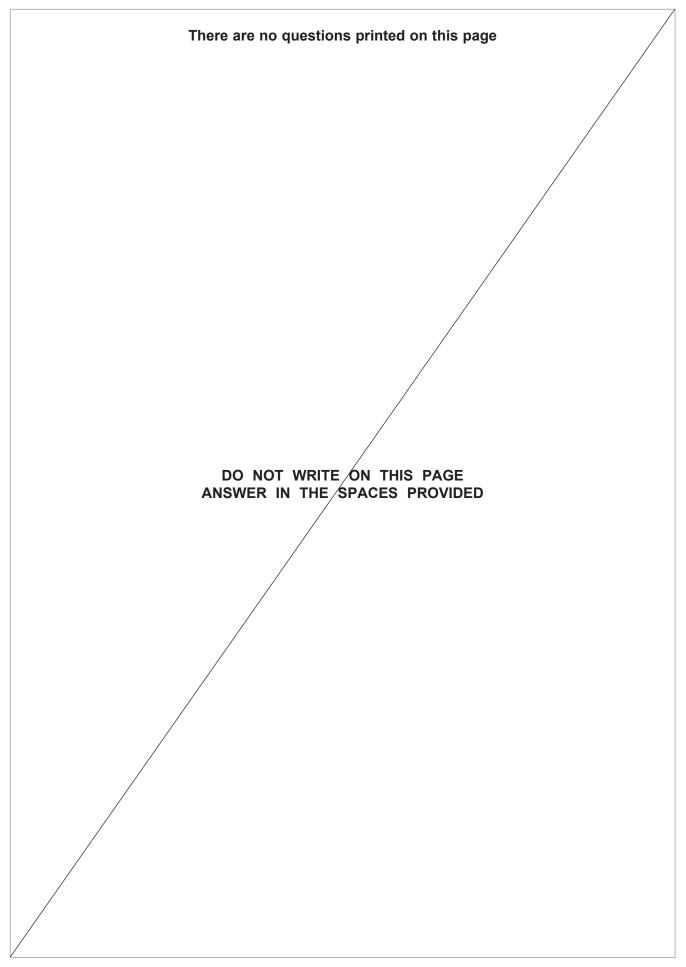

What conclusion can you make from this data? [2 marks]	
b) (ii) A game of cricket may be stopped if the light level falls below 100 lux.	12 (b) (ii)
What is the potential difference across the LDR when the light level is 100 lux?	
Use information from Figure 11 and Table 3 . [1 mark]	
Potential difference =V	

Figure 12 shows an astronaut floating in space.

The astronaut is stationary. She throws a hammer in the direction shown.


Figure 12

13 (a)	The total momentum of the astronaut and the hammer are conserved.	
	What is meant by the conservation of momentum?	[2 marks]
		[Z IIIaiks]
13 (b)	The astronaut moves after throwing the hammer. The momentum of the h 5.0 kgm/s. The mass of the astronaut is 80 kg.	ammer is
	Calculate the velocity of the astronaut.	
	Use the correct equation from the Physics Equations Sheet.	[2 marks]
		[=
	Velocity =	m/s
13 (c)	The momentum of the astronaut has a negative value. Why?	
10 (0)	The momentum of the abtionact has a negative value. Willy.	[1 mark]

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Acknowledgement of copyright-holders and publishers

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements in future papers if notified.

Figure 10: © Getty Images

Copyright © 2014 AQA and its licensors. All rights reserved.

