

4791/01

ADDITIONAL APPLIED SCIENCE

UNIT 1: Science at Work in Applied Contexts

FOUNDATION TIER

P.M. TUESDAY, 12 May 2015

1 hour plus your additional time allowance

Surname	
Other Names	
Centre Number	
Candidata Number 0	
Candidate Number 0	

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	8			
2.	9			
3.	8			
4.	12			
5.	11			
6.	12			
Total	60			

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink, black ball-point pen or your usual method.

Write your name, centre number and candidate number in the spaces provided on the front cover.

Answer ALL questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded that assessment will take into account the quality of written communication (QWC) used in your answer to question 6(i).

You are reminded to show all your workings. Credit is given for correct workings even when the final answer given is incorrect.

TABLE 1

META	ALS	NON-M	ETALS
Element	Symbol	Element	Symbol
CARBON	С	ALUMINIUM	al
COPPER	Со	PHOSPHORUS	PH

TABLE 2

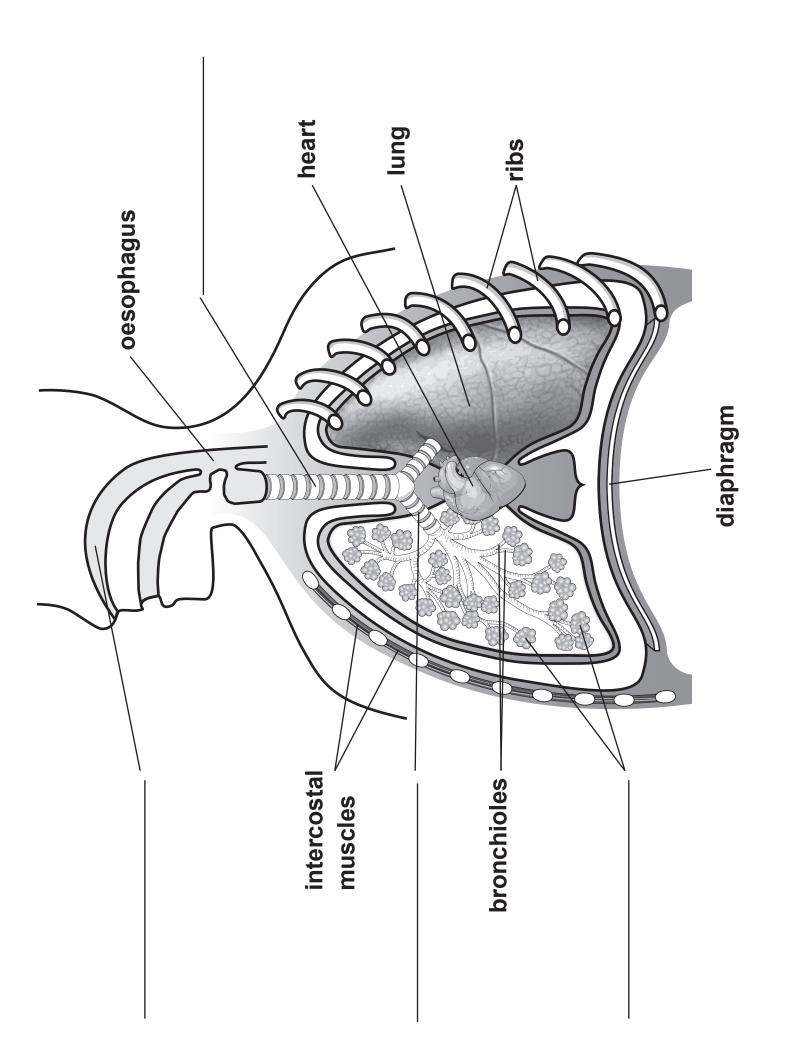
META	ALS	NON-M	ETALS
Element	Symbol	Element	Symbol

Answer ALL the questions in the spaces provided.

1(a) Lee entered the names of metals and non-metals with their symbols into the table opposite (Table 1). Lee made some errors when he filled in the table.

Complete the table opposite (Table 2), correcting the errors made by Lee. [5]

1(b)	The	formula	for	carbon	dioxide	is	CO ₂ .
------	-----	---------	-----	--------	---------	----	-------------------


The relative atomic mass of carbon is 12. The relative atomic mass of oxygen is 16.

(i) Calculate the relative formula mass of carbon dioxide. [2]

relative formula mass of carbon dioxide =

(ii) What is the mass of 1 mole of carbon

dioxide? _____ g [1]

- 2. Llinos' response to exercise is being monitored by her health care team.
- (a) The team needs to know about the respiratory system.

LABEL the missing parts on the diagram opposite using only words from the list below. [4] One label in the list is NOT needed in the diagram.

ventricle
alveoli
nasal cavity
trachea
bronchus

Gas	% of gas in air breathed in	% of gas in air breathed out
nitrogen	78	78
oxygen	21	17
carbon dioxide	0.03	4.03
other gases	0.97	0.97

2(b)	The air breathed in and out by Llinos was analysed. The analysis is shown opposite.
	State TWO differences between the air breathed in and air breathed out. [2]
	1
	2
(c)	(i) Complete the following equation. [2]
glucose	e + oxygen + + energy

(ii) Name the reaction in the equation above. [1]

TESTS FOR NEGATIVE IONS

Negative ion	Solutions added	Results
carbonate	dilute hydrochloric acid	carbon dioxide gas given off
chloride	dilute nitric acid then silver nitrate	white precipitate
iodide	dilute nitric acid then silver nitrate	yellow precipitate
nitrate	iron(II) sulfate then concentrated sulfuric acid	brown ring forms
sulfate	barium chloride	white precipitate

TEST FOR POSITIVE IONS

Positive ion	Flame test colour
barium	yellow-green
calcium	brick red
copper	green
lead	blue
lithium	red
potassium	lilac
sodium	yellow

3. The tables opposite show tests that can be carried out by a technician.

3. The table opposite shows the tests carried out by the technician on four compounds, A, B, C and D, and the results of those tests.

Use the information to complete the table below.

[8]

Compound	Positive ion	Negative ion	Name of compound
A		iodide	
В	lithium		
С	ammonium		ammonium
D			

Material	Density (kg/m³)	Stiffness (GPa)	Melting point (°C)	Tensile strength (MPa)	Brittle
aluminium	2700	69	660	06	No
steel	7 800	210	1357	1200	No
polyester	1900	150	121	250	Yes

4.	resea The t	van manufacturers are continually arching different ways of making caravans. Table opposite shows information about e of the materials used to make the body of vans.
(a)		ne time, caravan bodies were made from inium.
	(i)	Use the table to state ONE advantage and ONE disadvantage of making caravan bodies from aluminium instead of steel. [2]
		Advantage
		Disadvantage

4(a)	(ii)	I.	Describe how atoms are arranged in aluminium. [1]
		II.	Give ONE reason why this makes aluminium malleable. [1]

-

4(b)	(ii)	Use data from the table opposite page 11 to state THREE differences between aluminium and polyester. [3]		
		2.		
		3		

4(b) (i	ii) 🤄	State ONE disadvantage of polyester			
	(caravan bodies.	[1]		

(iv) The volume of polyester needed to make one type of caravan body is 0.4 m³.

Calculate the mass of the caravan body.

Use the equation:

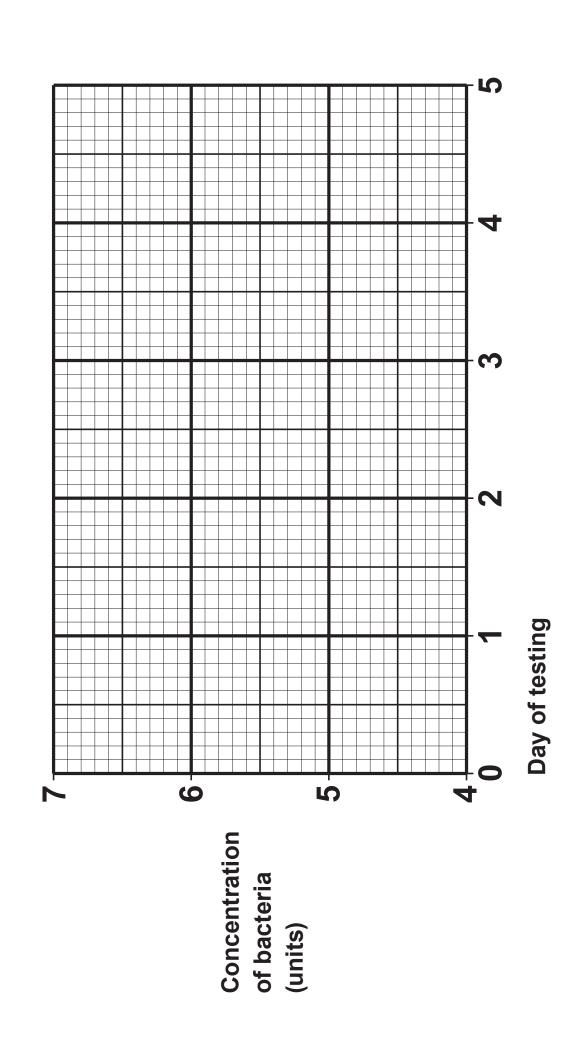
mass = density × volume

[2]

mass = _____ kg

A food manufacturer claims that probiotic

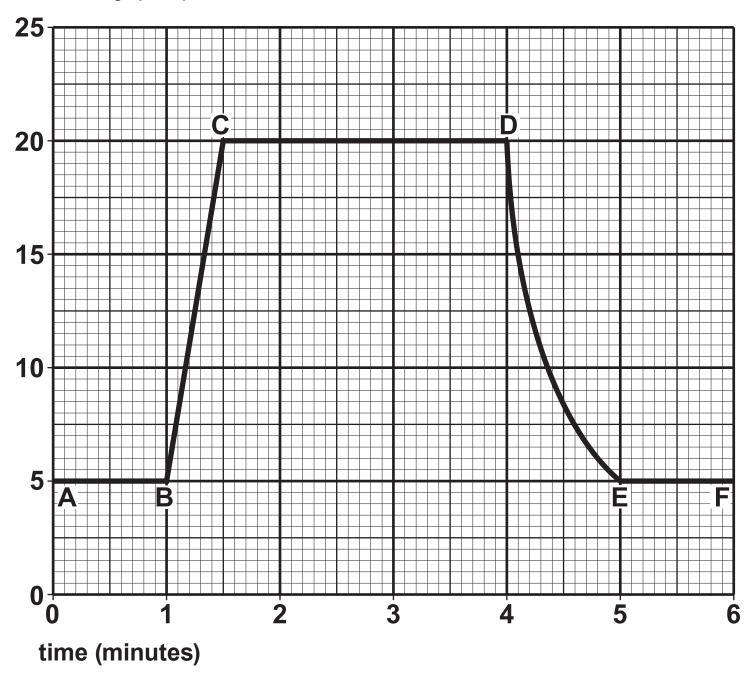
.


	yoghurt, containing live bacteria, will provide health benefits when eaten.
(a)	Describe the stages in the production of yoghurt. [3]

5(b) Some people claim that bacteria will not survive in the stomach. The food manufacturer claims that the bacteria will survive and their numbers will increase.

An independent scientist investigates the claim. She produces a model of the stomach and adds live bacteria found in the yoghurt. The bacteria concentration is measured daily for 5 days. The results are shown below.

Day of testing	Concentration of bacteria (units)
1	5.0
2	6.4
3	4.8
4	5.6
5	4.8


(i) Plot a graph of the data on the grid opposite and join the plots, point to point.

5(b)	(ii)	Do the results agree with the claim that the bacteria will not survive in the stomach? Give ONE reason for your answer. [1]
	(iii)	Do the results agree with the manufacturer's claim that the number of bacteria in the stomach will increase? Give ONE reason for your answer. [1]

5(c)	(i)	It is important that harmful bacteria do not get into the probiotic yoghurt during production.		
		State TWO methods of making sure this will not happen. [2]		
		1		
		2.		
	(ii)	Name ONE symptom of food poisoning caused by harmful bacteria. [1]		

velocity (m/s)

6.	The velocity–time graph opposite shows part of a journey taken by a cyclist.				
(i)	DESCRIBE the motion of the cyclist using data from the graph. [6 QWC]				

6(ii)	Calculate the distance travelled by the cyclist between C and D on the graph opposite page 20.			
		[3]		
	Use the equation:			
	distance = velocity × time			

distance travelled = _____m

6(iii)	Calculate	the acceleration of the cyclist between
	B and C.	[3]

Use the equation:

acceleration =
$$\frac{\text{change in velocity}}{\text{time}}$$

END OF PAPER

		Test used to identify the positive ion		Test used to identify the negative ion	
Compound	Test using the solid form of compound	Result	Test using a solution of compound	Result	
A	Flame test	Lilac coloured flame	Add dilute nitric acid followed by silver nitrate solution	Yellow precipitate	
В	Flame test	Red coloured flame	Add dilute hydrochloric acid. Bubble gas given off into limewater.	Fizzing occurs. Gas given off turns limewater milky.	
C	Add sodium hydroxide solution and warm mixture. Test gas given off with damp litmus paper.	Pungent smelling gas given off which turns damp red litmus paper blue	Add barium chloride solution	White precipitate	
D	Flame test	Yellow coloured flame	Add dilute nitric acid followed by silver nitrate solution	White precipitate	