GENERAL CERTIFICATE OF SECONDARY EDUCATION

Harnessing Chemicals (Higher Tier)
WEDNESDAY 18 JUNE 2008

Candidates answer on the question paper.
Additional materials (enclosed):
None
Calculators may be used.
Additional materials: Pencil Ruler (cm/mm)

Candidate Surname

Centre
Number

Candidate
Number

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is $\mathbf{3 6}$.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	10	
2	4	
3	9	
4	13	
TOTAL	36	

This document consists of $\mathbf{1 2}$ printed pages.

Answer all the questions.

1 Esters are chemicals with sweet, often fruity, smells.
They are used to make the ink in scented pens.

Brogan works as a technician for a manufacturer of scented inks.
He follows a standard procedure to make the esters.
The diagrams show the steps in the procedure.

Step 1

- add $10 \mathrm{~cm}^{3}$ of alcohol to $10 \mathrm{~cm}^{3}$ of carboxylic acid in a distillation flask
- add $2 \mathrm{~cm}^{3}$ of concentrated sulfuric acid to the flask
- swirl the flask to mix
- add the condenser and heat gently for 10 minutes

(a) Sulfuric acid helps speed up the reaction and is not used up in the process.

What is this type of chemical called?
(b) The distillate is poured into a beaker of sodium carbonate solution.

This is to remove the sulfuric acid and any unreacted carboxylic acid.
Name the gas released in this process.
(c) The ester found in an apple-scented pen is pentyl pentanoate.

Pentyl pentanoate is made by reacting pentanol with pentanoic acid.
Water is also made in this reaction.
(i) Write the word equation for this reaction.

The formulae of the chemicals present in this reaction are shown below.

A

C

B

D
(ii) What is the formula of the alcohol functional group?
(iii) What is the relative formula mass of \mathbf{D} ?

You are advised to show how you work out your answer.
(relative atomic masses: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16$)
(d) Esters are produced as fine chemicals using a batch process.
(i) What is meant by the term fine?
\qquad
(ii) Explain one advantage and one disadvantage of a batch process.
\qquad
\qquad
\qquad
\qquad
[Total: 10]

2 Most products we use in our homes are made from a mixture of ingredients.
They are combined according to a fixed formula, called a formulation.
The table below shows the different types of formulation, their description and examples.

type of formulation	description	example
emulsion	an oily liquid dispersed in a watery liquid	salad dressing
solid mixture	two or more ingredients mixed together	
solution	a soluble solid dissolved in a liquid	eye drops
	an insoluble solid dispersed in a liquid	milk of magnesia

(a) Complete the table.
(i) Write the name of the missing formulation.
(ii) Give one example of a solid mixture.
(b) Why is an emulsifying agent added to an emulsion?
\qquad
\qquad
\qquad

3 An aqueous solution of potassium chloride is prepared using the following steps.
The steps are in the wrong order.
A Dissolve the potassium chloride in the smallest amount of water possible.
B Rinse the beaker with water and add to the graduated flask.
C Stopper the graduated flask and mix well.
D Transfer the potassium chloride solution into a $100 \mathrm{~cm}^{3}$ graduated flask.
E Accurately weigh 1.5 g of the solid potassium chloride and transfer into a beaker.
F Add water drop by drop until the solution is up to the $100 \mathrm{~cm}^{3}$ mark.
(a) Write down the correct order of the statements.

The first one has been done for you.
\qquad
\qquad
\qquad
\qquad
(b) It is important that the chemicals are transferred from one container to another with minimum loss.

Describe two ways of transferring the potassium chloride solution to the graduated flask without spillage.
\qquad
\qquad
\qquad
(c) Name the solute used in this procedure.
\qquad
(d) $100 \mathrm{~cm}^{3}$ of the solution contains 1.5 g of potassium chloride.

Calculate the concentration of the solution in grams per litre (g / l).
You are advised to show how you work your answer out.
concentration $(\mathrm{g} / \mathrm{I})=\frac{\text { mass }(\mathrm{g})}{\text { volume }(\mathrm{l})} \quad 100 \mathrm{~cm}^{3}=100 \mathrm{ml}$
concentration $=$ \qquad g/I [2]
[Total: 9]

4 Nitrogen, N_{2} and hydrogen, H_{2} are used to make ammonia, NH_{3}.
(a) Write a balanced equation for this reaction.
\qquad
(b) Ammonia is made using a continuous process.

(i) The hydrogen needed for this process is obtained from natural gas, from the North Sea. This method of obtaining hydrogen is not sustainable.

Explain why.
\qquad
\qquad
\qquad
(ii) Not all the nitrogen and hydrogen reacts to make ammonia in the reactor.

What happens to the nitrogen and hydrogen which hasn't reacted?
\qquad
\qquad
(c) The graph below shows the amount of ammonia produced under different conditions.

(i) Look at the graph. Which two conditions produce more ammonia?
\qquad
\qquad
(ii) At $300^{\circ} \mathrm{C}$ and a pressure of 100 atmospheres:
percentage yield for ammonia is 40%;
actual yield for ammonia is 5000 g .
Calculate the theoretical yield for ammonia under these conditions.
You are advised to show how you work out your answer.

$$
\text { theoretical yield }=\frac{\text { actual yield }}{\text { percentage yield }} \times 100
$$

(d) It is important to protect the health and safety of people who work in the chemical industry. Which organisation in the UK does this?
\qquad
(e) The ammonia produced has many uses.
(i) A small amount of the ammonia produced is used to make nitric acid.

What is the chemical formula of nitric acid?
(ii) Ammonia can be reacted with nitric acid to form the soluble salt ammonium nitrate which is used in fertilisers.

The table shows the solubility of some common salts.

soluble	insoluble
all nitrates	silver and lead chloride
most chlorides	
most sulfates	barium, lead and calcium sulfate
sodium and potassium carbonate	most carbonates

Put a ring around the two soluble salts in the list below.

$$
\mathrm{CaCO}_{3} \quad \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \quad \mathrm{Na}_{2} \mathrm{CO}_{3} \quad \mathrm{MgCO}_{3} \quad \mathrm{CaSO}_{4}
$$

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
© OCR 2008

