Read the following instructions carefully

1. This question paper contains 24 printed pages including pages for rough work. Please check \mathbf{a}^{1-2} ges and report discrepancy, if any.
2. Write your registration number, your name and name of the examination centre the peefied locations on the right half of the ORS.
3. Using HB pencil, darken the appropriate bubble under each digit of your regist tion n mber and the letters corresponding to your paper code.
4. All the questions in this question paper are of objective type.
5. Questions must be answered on Objective Response Sheet ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the quastio num er on the left hand side of the ORS. Each question has only one correct answer. In q.se; Wisn to change an answer, erase the old answer completely. More than one answer bubblathe ast muestion will be treated as a wrong answer.
6. Questions I through 20 are 1-mark questions an qui tions 21 through 85 are 2-mark questions.
7. Questions 71 through 73 is one set of com on dim questions, questions 74 and 75 is another pair of common data questions. The quest in irs 76,77$),(78,79),(80,81),(82,83)$ and $(84,85)$ are questions with linked answers. Th ar two the second question of the above pairs will depend on the answer to the first question, the air if the first question in the linked pair is wrongly answered or is un-attempted, then the the the second question in the pair will not be evaluated.
8. Un-attempted question wil Cr 2, zero marks.
9. NEGATIVE M RKING. ror Q. 1 to Q.20, 0.25 mark will be deducted for each wrong answer, For Q. 21 to Q.75 a. mar will be deducted for each wrong answer. For the pairs of questions with linked answer , will be negative marks only for wrong answer to the first question, i.e. for Q.76, $\mathrm{Q} .78, \mathrm{Q} 40,0,7$ and $\mathrm{Q} .84,0.5$ mark will be deducted for each wrong answer. There is no negative marking $1 \mathrm{Q} . \mathrm{M}, \mathrm{Q} .79, \mathrm{Q} .81, \mathrm{Q} .83$ and Q .85.
10. Wan or without data connectivity is allowed in the examination hall.

1 . 0^{-1} ts, graph sheets and tables are NOT allowed in the examination hall.
12. Rough work can be done on the question paper itself. Additional blank pages are given at the end of the question paper for rough work.
Q. 1 - Q. 20 carry one mark each.
Q. 1 For arbitrary matrices E, F, G and H, if $E F-F E=0$ then Trace $(E F G H)$ is equal to
(A) Trace (HGFE)
(B) Trace(E)Trace(F)Trace(G)Trace(H)
(C) Trace $(G F E H)$
(D) Trace (EGHF)
Q. 2 An unitary matrix $\left(\begin{array}{ll}a e^{i \alpha} & b \\ c e^{i \beta} & d\end{array}\right)$ is given, where a, b, c, d, α and β are real. The inverse or matrix is
(A) $\left(\begin{array}{cc}a e^{i a} & -c e^{i p} \\ b & d\end{array}\right)$
(C) $\left(\begin{array}{ll}a e^{-l a} & b \\ c e^{-l \beta} & d\end{array}\right)$
(B) $\left(\begin{array}{cc}a e^{i \alpha x} & c e^{t \beta} \\ b & d\end{array}\right)$
(D) $\left(\begin{array}{cc}a e^{-i \alpha \alpha} & c e^{-i \beta} \\ b & d\end{array}\right)$
Q. 3 The curl of a vector field \vec{F} is $2 \hat{x}$. Identify the appro te field \vec{F} from the choices given below.
(A) $\vec{F}=2 z \hat{x}+3 z \hat{y}+5 y \hat{z}$
(B) $3 x \hat{y}+5 y \hat{z}$ d
(C) $\vec{F}=3 x \hat{y}+5 y \hat{z}$
(D) $\vec{F}=2 \hat{x}+5 y \hat{z}$
Q. 4 • A rigid body is rotating about its -nt of ass, fixed at the origin, with an angular velocity $\vec{\omega}$ and angular acceleration $\bar{\alpha}$. If the orqu act ng on it is $\vec{\tau}$ and its angular momentum is \bar{L}, the rate of change of its kinetic energy is
(A) $1 / 2 \bar{\tau} . \bar{\omega}$
(${ }^{2} 1 / 2, \vec{\omega}$
(C) $1 / 2(\vec{\tau} \cdot \bar{\omega}+\vec{L} \cdot \vec{\alpha})$
(D) $1 / 2 \vec{L} . \bar{\alpha}$
Q. 5 A cylinder of ms M and radius R is rolling down without slipping on an inclined plane of angle of inclination . The qumber of generalized coordinates required to describe the motion of this system is
(A)
(B) 2

(C) 4
(D) 6
Q. 6 A parallel plate capacitor is being discharged. What is the direction of the energy flow in terms of

Q. 7 Unpolarized light falls from air to a planar air-glass interface (refractive index of glass is 1 the reflected light is observed to be plane polarized. The polarization vector and the angle incidence θ, are
(A) perpendicular to the plane of incidence and $\theta_{i}=42^{\circ}$.
(B) parallel to the plane of incidence and $\theta_{1}=56^{\circ}$
(C) perpendicular to the plane of incidence and $\theta_{\mathrm{t}}=56^{\circ}$.
(D) parallel to the plane of incidence and $\theta_{1}=42^{\circ}$.
Q. 8 A finite wave train, of an unspecified nature, propagates along the positive x axis ith a nstant speed r and without any change of shape. The differential equation among the ε_{q} (isted oelow, whose solution it must be, is
(A) $\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \psi(x, t)=0$
(B) $\left(\nabla^{2}-\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}\right), \omega(\overline{\mathbf{r}}, t)=0$
(C) $\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}-i \hbar \frac{\partial}{\partial t}\right) \psi(x, t)=0$
(D) $\left(V^{2}+\frac{\partial}{\partial t}\right)$ v($\left.\mathrm{P}, \mathrm{n}\right)=0$
Q. 9 Let $\left|\psi_{0}\right\rangle$ denote the ground state of the hydrogen a hom the correct statement from those geven below:
(A) $\left[L_{x}, L_{y}\right]\left|\psi_{0}\right\rangle=0$
(C) $\overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{S}}\left|\psi_{0}\right\rangle \neq 0$
(B) ${ }^{2}\left|\psi_{0}\right\rangle=0$
$\left[\mathrm{S}_{\mathrm{x}}, \mathrm{S}_{\mathrm{y}}\right]\left|\psi_{\mathrm{n}}\right\rangle=0$
Q. 10 Thermodynamic variables of a sy, ce co velume V, pressare P, temperature T, number of particles N, internal energy E and (ve ical potential μ, etc. For a system to be specified by Microcanonical (MC), Canom $1 C \mathrm{E}$) and Grand Canonical (GC) ensembles, the parameters required for the respectin ansel bles are:
(A) $\mathrm{MCl}(N, V, T), \mathrm{CE}:=, N) \mathrm{GC}:(V, T, \mu)$
(B) $\mathrm{MC}:(E, V, N) ; \mathrm{CE}:(N, V, T) ; \mathrm{GC}:(V, T, \mu)$
(C) MC: $(V, T, \mu), C E:(N, V, T)$; GC: (E, V, N)
(D) $\mathrm{MC}(E, V, N) ; \mathrm{CE}:(V, T, \mu) ; \mathrm{GC}(N, V, T)$
Q. 11 The prest prsus temperature diagram of a given system at certain low temperature range is found to e pandel to the temperature axis in the liquid-to-sotid transition region. The change in the $s_{1} r_{i}$ volume remains constant in this region. The conclusion one can get from the above is
4) m ntropy of solid 1 s zero in this temperature region.
the entropy increases when the system goes from liquid to solid phase in this temperature region.
(C) the entropy decreases when the system transforms from liquid to solid phase in this region of lemperature.
(D) the change in entropy is zero in the liquid-to-solid transition region.
Q. 12 The radial wave function of the electrons in the state of $n=1$ and $l=0$ in a hydrogen atom is

Q 13 The tast two terms of the electronic configuration of manganese (Mn) atom is $3 d^{6} 4,5$. factor of Mn^{4+} ion is
(A) ${ }^{4} D_{1 / 2}$
(B) ${ }^{4} \mathrm{~F}_{1 / 2}$
(C) ${ }^{3} \mathrm{~F}_{9,2}$
(D) ${ }^{3} \mathrm{D}_{72}$

Q: 4 The coherence length of laser light is
(A) directly proportional to the length of the active lasing medium.
(B) directly proportional to the width of the spectral line.
(C) inversely proportional to the width of the spectral line.
(D) inversely proportional to the length of the active lasing medium.

Q 15 Metalle monovalent sodum crystallizes in body centered cubic structure. me ne length of the unit cell is $4 \times 10^{-8} \mathrm{~cm}$, the concentration of conduction electrons in net dic sedium is
(A) $6.022 \times 10^{23} \mathrm{~cm}^{-3}$
(B) $3.125 \times 10^{32} \mathrm{~cm}^{-3}$
(C) $2.562 \quad 0^{-2}-0^{-3}$
(D) $1.250 \times 10^{20} \mathrm{~cm}^{-3}$
Q. 16 The plot of inverse magnetic susceptibility $1 / \chi$ versul T an an andifermagnetic sample corresponds to
(A)
(B)

(C)

(D)

Q. 17 According to the quark model, the K^{+}meson is composed of the following quarks:
(A) uud
(B) $\cup \vec{c}$
(C) $u \bar{s}$
(D) $s \bar{u}$
Q. 18

An O^{16} nucleus is spherical and has a charge radius R and a volume $V \equiv 4 \pi R^{3}$. Accordino to the

Q 19 A common emitter transistor amplifier circuit is operated under a fixed bias. In this operating point
(A) remans fixed with an increase in temperature.
(B) moves towards cut-off region with an increase in temperature.
(C) moves towards the saturation region with a decrease in temperature.
(D) moves towards the saturation region with an increase in temperature.
Q. 20 Under normal operating conditions, the gate terminal of an n-channel junction field effec trans, tor (JFET) and an n-channel metal oxide semiconductor field effect transistor (MOSFF
(A) both biased with positive potentials.
(B) both biased with negative potentials.
(C) brased with positive and negative potentials, respectively.
(D) blased with negative and positive potentials, respectuvely.

Q. 21 to $Q .75$ carry two marks each.

Q 21
The eigenvalues of the matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & c o\end{array}\right)$ re
(A) $\frac{1}{2}(\sqrt{3} \pm i)$ when $\theta=45^{\circ}$
(B) $\frac{1}{2}(\sqrt{3} \pm i)$ when $\theta=30^{\circ}$
(C) ± 1 since the matrix is unit: y
(D) $\frac{1}{\sqrt{2}}(1 \pm i)$ when $\theta=30^{\circ}$

Q22 If the Fourier transform $f(x-a)]=\exp (-i 2 \pi v a)$, then $\mathrm{F}^{-1}(\cos 2 \pi a v)$ will correspond to
(A) $\delta(x-a) \quad \Delta x+a)$
(B) a constant
(C) $\left.\frac{1}{[d} x-i \delta(x+a)\right]$
(D) $\frac{1}{2}[\delta(x-a)+\delta(x+a)]$
Q. $2 . \sim \oint_{C} d z \operatorname{Ln}(z)$, where C is the unit circle taken anticlockwise and $L n(z)$ is the principal branch Of the Logarthm function, which one of the following is correct?
(A) $I=0$ by residue theorem
(B) I is nol defined since $L n(z)$ has a branch cut.
(C) $/ \neq 0$
(D) $\oint_{C} d z \operatorname{Ln}\left(z^{2}\right)=2 I$
Q. 25 Consider the Bessel equation $(v=0), \frac{d^{2} y}{d z^{2}}+\frac{1}{z} \frac{d y}{d z}+y=0$. Which one of the statements is correct?
(A) Equation has regular singular points at $z=0$ and $z=\infty$.
(B) Equation has 2 linearly independent solutions that are entire.
(C) Equation has an entire solution and a second linearly independent solution singular at $z=0$
(D) Limit $z \rightarrow \infty$, taken along x axis, exists for both the linearly independent solutions.
Q. 26 Under a certain rotation of coordinate axes, a rank-1 tensor $v_{a}(a=1,2,3)$ tran ams anding to the orthogonal transformation defined by the relations $v_{1}^{\prime}=\frac{1}{\sqrt{2}}\left(v_{1}+v_{2}\right) ; \quad v_{2} \frac{1}{\sqrt{2}}\left(-v_{1}+v_{2}\right)$; $v_{3}^{\prime}=v_{3}$. Under the same rotation a rank-2 tensor $T_{n, h}$ would transfor (1s) ch hat
(A) $T_{1,1}^{\prime}=T_{1,1} T_{1,2}$
(B) $\quad T_{1.1}^{\prime}=T_{1,1}$
(C) $T_{1,1}^{\prime}=T_{1,1}+2 T_{2,2}-T_{2,1}$
(D) $T_{1}^{\prime}=\frac{1}{2}\left(T_{1,1}+T_{2.2}+T_{1,2}+T_{2,1}\right)$
Q. 27 The Lagrangian of a system is given by $=\frac{-\dot{x}^{2}}{2}+q \dot{q}-\frac{1}{2} q^{2}:$ it describes the motion of
(A) a harmonic oscillator.
(B) a damped harmonic oscillator-
(C) an anharmonic oscillator.
(D) a system with unbounded motion.
Q. 28

The mome in mita tensor of a rigid body is given by $I=\left(\begin{array}{ccc}8 & 0 & -4 \\ 0 & 4 & 0 \\ -4 & 0 & 8\end{array}\right)$. The magnitude of the mon ent ominertia about an axis $\bar{n}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right)$ is
(A) 6
(B) 5
(C) 2
(D) $8 / 3$
Q. 29 A hoop of radus R is pivoted at a point on the circumference. The period of small oscillations in the plane of the hoop is
$\sqrt{n n} \quad \sqrt{n} \quad r$
Q.30 A mass m is constrained to move on a horizontal frictionless surface. It is set in circula with radius r_{0} and angular speed ω_{0} by an applied force \vec{F} communicated through an inexters thread that passes through a hole on the surface as shown in the figure. This force is then suddent doubled. The magnitude of the radial velocity of the mass

(A) increases till the mass falls into the hole
(B) decreases till the mass falls into the hole.
(C) remains constant.
(D) becomes zero at a radius r_{1} where $0<r_{1}<r_{0}$.
Q. 31 For a simple harmonic oscillator the agrangian is given by $L=\frac{1}{2} \dot{q}^{2}-\frac{1}{2} q^{2}$. If $A(p, q)=\frac{p+i q}{\sqrt{2}}$ and $H(p, q)$ if th Hamiltonian of the system, the Poisson bracket $\{A(p, q), H(p, q)\}$ is given
(A) $i A(p, q)$
B) $A \cdot(p, q)$
(C) $-i A^{\prime \prime}(p, q)$
(D) $-i A(p, q)$
Q. 32 A plane e ctron gnetic wave is given by $E_{0}\left(\hat{x}+e^{t \delta} \hat{y}\right) \exp \{i(k z-\omega t)\}$. At a given location, the nuribe on yes \vec{E} vanishes in one second is

A, An integer near $\frac{\omega}{\pi}$ when $\delta=n \pi$ and zero when $\delta \neq n \pi, n$ is integer
(D) An integer near $\frac{\omega}{\pi}$ and is independent of δ
(C) An integer near $\frac{\omega}{2 \pi}$ when $\delta=n \pi$ and zero when $\delta \neq n \pi, n$ is integer
(D) An integer near $\frac{\omega}{2 \pi}$ and is independent of δ
Q. 33 A dielectric sphere is placed in a uniform electric field directed along the positive one of the following represents the correct equipotential surfaces?
(A)

(B)

(C)

Q. 34 A rod of length L with uniform charge dens
(D)
 below. $(\hat{r}, \hat{\phi}, \hat{z})$ refer to the unit vectors $+Q_{,}, \vec{j}$ is the vector potential at a distance d from the origin O along z-axis for $d \gg L$ ad is th. current density due to the motion of the rod. Which one of the following statements is cor ect

(A) \vec{J} along $\hat{r} ; \vec{A}$ along $\hat{z} ;|\vec{A}| \propto \frac{1}{d}$
(B) \bar{J} along $\hat{\phi} ; \vec{A}$ along $\hat{\phi} ;|\vec{A}| \propto \frac{1}{d^{2}}$
(C) \vec{J} along $\hat{\psi} ; \vec{A}$ along $\hat{z} ;|\vec{A}| \propto \frac{1}{d^{2}}$
(D) \vec{J} along $\hat{\phi} ; \vec{A}$ along $\hat{\phi} ;|\vec{A}| \propto \frac{1}{d}$
Q. 36 At time $t=0$, a charge distribution $\rho(\vec{r}, 0)$ exists within an ideal homogeneous conc permittivity ε and conductivity σ. At a later time $\rho(\bar{r}, t)$ is given by
(A) $\rho(\bar{r}, t)=\rho(\bar{r}, 0) \exp \left(-\frac{\sigma t}{\varepsilon}\right)$.
(B) $\rho(\vec{r}, t)=\frac{\rho(\vec{r}, 0)}{1+(\sigma t / \varepsilon)^{2}}$
(C) $\rho(\vec{r}, t)=\rho(\vec{r}, 0) \exp \left[-\left(\frac{\sigma t}{\varepsilon}\right)^{2}\right]$
(D) $\rho(\stackrel{\rightharpoonup}{r}, t)=\rho(\vec{r}, 0) \frac{\varepsilon}{\sigma t} \sin \left(\frac{\sigma t}{\varepsilon}\right)$
Q. 37 A nomrelativistic charged particle moves along the positive x-axis with a onsta t positive acceleration $a \hat{x}$. The particle is at the origin at $t=0$. Radiation is observed ot $=0$, a distant point $(0, d, 0)$ on the y-axis. Which one of the following statements is corr $t t$?
(A) The radiation is unpolarized.
(B) The radiation is plane polarized with polarization parallel to th x. xin
(C) The radiation is plane polarized with polarization parall to the plane along a line inclined to the x axis.
(D) The radiation is elliptically polarized.
Q. 38 For a physical system, two observables 0 nd O , re known to be compatible. Choose the correct implication from amongst those given br ow
(A) Every eigenstate of O_{1} must n ac. oril, be an eigenstate of O_{2}.
(B) Every non-degenerate eighnstat of C_{1} must necessarily be an eigenstate of O_{2}.
(C) When an observation in carried out on an arbitrary state $|\Psi\rangle$ of the physical system, a subsequent obs rva\% or oi O_{2} leads to an unambiguous result.
(D) Observation of O_{1} min $O_{2,}$, carried out on an arbitrary state $|\Psi\rangle$ of the physical system, lead to the in ies results irrespective of the order in which the observations are made.
Q. 39 An ex measurement of the position of a simple harmonic oscillator (SHO) is made with the Io $4 x=x_{0}$. [The SHO has energy levels $E_{n}(n=0,1,2, \ldots)$ and associated normalized wavefunctions ψ_{n}]. Subsequently, an exact measurement of energy E is made. Using the general notation $r\left(E=E^{\prime}\right)$ denoting the probability that a result E^{\prime} is obtained for this measurement, the following statements are written. Which one of the following statements is correct?
(A) $\operatorname{Pr}\left(E=E_{0}\right)=0$
(B) $\operatorname{Pr}\left(E=E_{n}\right)=1$ for some value of n.
(C) $\operatorname{Pr}\left(E=E_{n}\right) \propto \psi_{\mathrm{n}}(x)$
(D) $\operatorname{Pr}\left(E>E^{\prime \prime}\right)>0$ for any $E^{\prime \prime}$.
0.40 Consider the combined svstem of nrntan and alactem :- th.
Q.41 A particle is placed in a one dimensional box of size L along the x-axis $(0<x<L)$. Wh following is true?
(A) In the ground state, the probability of finding the particle in the interval $(L / 4,3 L / 4)$ is half.
(B) In the first excited state, the probability of finding the particle in the interval ($L / 4,3 L / 4$) is half:
(C) For an arbitrary state $|\Psi\rangle$, the probability of finding the particle in the left half of the well is half.
(D) In the ground state, the particle has a definite momentum.

An inelastic bail of mass m has been thrown vertically upwards from the ground $a=0$, The initial kinetic energy of the ball is E. The phase trajectory of the ball after succe arve ung on the ground is
(A)

(B)

(C)

D)

Q. 43 containing N non-interacting localized particles of spin $1 / 2$ and magnetic moment μ each 4. k ot in constant external magnetic field B and in thermal equilibrium at temperature T. The maguetization of the system is,
(A) $N \mu \operatorname{coth}\left(\frac{\mu B}{k_{D} T}\right)$
(B) $N \mu \tanh \left(\frac{\mu B}{k_{B} T}\right)$
(C) $N \mu \sinh \left(\frac{\mu B}{k_{B} T}\right)$
(D) $N_{\mu \cosh }\left(\frac{\mu B}{k_{B} T}\right)$
Q. 44 Two identical particles have to be distributed among three energy levels. Let r_{B}, r_{F} and r_{C} represent
the ratios of probability of finding two nartimpe to thot
Q. 45 A photon gas is at thermal equilibrium at temperature T. The mean number of photons in state $\varepsilon=\hbar \omega$ is
(A) $\exp \left(\frac{\hbar \omega}{k_{B} T}\right)+1$
(B) $\exp \left(\frac{\hbar \omega}{k_{B} T}\right)-1$
(C) $\left(\exp \left(\frac{\hbar \omega}{k_{g} T}\right)+1\right)^{-1}$
(D) $\left(\exp \left(\frac{\hbar \omega}{k_{B} T}\right)-1\right)$
Q. 46 Consider a system of N atoms of an ideal gas of type A at temperature T and volume V. 1 is. ppt in diffusive contact with another system of N atoms of another ideal gas of type B a the s. ne temperature T and volume V. Once the combined system reaches equilibrium,
(A) the total entropy of the final system is the same as the sum of the entropy of thic indiv Jual system always.
(B) the entropy of mixing is $2 N k_{s} \ln 2$.
(C) the entropy of the final system is less than that of sum of the in ia cnt pies of the two gases.
(D) the entropy of mixing is non-zero when the atoms A and are of tre same type.
Q. 47 Consider a system of two non-interacting classical arti for which can occupy any of the three energy levels with energy values $E=0, \varepsilon$ and 2ε hay $n g$ degeneracies $g(E)=1,2$ and 4 respectively. The mean energy of the system i
(A)

$$
\begin{align*}
& \varepsilon\left(\frac{4 \exp \left(-\varepsilon / k_{B} T\right)+8 \exp \left(-2 \varepsilon / \cos ^{2}\right.}{1+2 \exp \left(-\varepsilon / k_{B} T\right)+4 \operatorname{exF}\left(-2 \varepsilon / k^{2}\right)}\right) \quad \varepsilon\left(\frac{2 \exp \left(-\varepsilon / k_{B} T\right)+8 \exp \left(-2 \varepsilon / k_{B} T\right)}{1+2 \exp \left(-\varepsilon / k_{B} T\right)+4 \exp \left(-2 \varepsilon / k_{B} T\right)}\right) \\
& \text { (C) } \tag{D}\\
& \varepsilon\left(\frac{2 \exp \left(-\varepsilon / k_{B} T\right)-4-\operatorname{kp}^{\left(-2 \varepsilon / k_{B} T\right)}}{1+2 \exp \left(-/ k_{B} T\right)+4 \exp \left(-2 \varepsilon / k_{B} T\right)}\right)^{2} \\
& \varepsilon\left(\frac{\exp \left(-\varepsilon / k_{B} T\right)+2 \exp \left(-2 \varepsilon / k_{B} T\right)}{1+\exp \left(-\varepsilon / k_{B} T\right)+\exp \left(-2 \varepsilon / k_{B} T\right)}\right)
\end{align*}
$$

Q.48 Thi ${ }^{2}$ secutive absorption lines at $64.275 \mathrm{~cm}^{-1}, 77.130 \mathrm{~cm}^{-1}$ and $89.985 \mathrm{~cm}^{-1}$ have been observed 1 icruwave spectrum for a linear rigid diatomic molecule. The moments of inertia I_{A} and are (I_{A} is with respect to the bond axis passing through the centre of mass and I_{B} is with pect to an axis passing through the centre of mass and perpendicular to bond axis)
(A) both equal to $\frac{\hbar^{2}}{12.855 h c} \mathrm{gm} \mathrm{cm}^{2}$
(B) zero and $\frac{\hbar^{2}}{12.855 h c} \mathrm{gm} \mathrm{cm}^{2}$
(C) both equal to $\frac{\hbar^{2}}{6.427 h c} \mathrm{gm} \mathrm{cm}^{2}$
(D) zero and $\frac{\hbar^{2}}{6.427 h c} \mathrm{gm} \mathrm{cm}^{2}$
Q. 49 A pure rotational Raman spectrum of a linear diatomic molecule is recorded using electromagnetic
Q. 50 Which one of the following statement is INCORRECT in vibrational spectro anharmonicity?
(A) The selection rule for vibrational spectroscopy is $\Delta v= \pm 1, \pm 2, \ldots$
(B) Anharmonicity leads to multiple absorption lines.
(C) The intensities of hot band lines are stronger than the fundamental absorption.
(D) The frequencies of hot band lines are smaller than the fundamental absorption.
Q. 51 The molecular spectra of two linear molecules $\mathrm{O}-\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{C}-\mathrm{S}$ are recorded in the nicro ave region. Which one of the following statement is correct?
(A) Both the molecules would show absorption lines.
(B) Both the molecules would not show absorption lines.
(C) O-C-O would show absorption lines, but not O-C-S.
(D) O-C-S would show absorption lines, but not O-C-O.
Q. 52 When the refractive index μ of the active medium changes y $\Delta \mu$ a laser resonator of length L, the change in the spectral spacing between the longit ant mive. of the laser is (c is the speed of light in free space)
(A) $\frac{c}{2(\mu+\Delta \mu) L}$.
(B) $\frac{c}{2 \Delta \mu L}$.
$\frac{c}{L} \frac{\Delta \mu}{\mu(\mu+\Delta \mu)}$.
(D) zero.
Q. 53 The primitive translation vecto f body centered cubic lattice are $\vec{a}=\frac{a}{2}(\hat{x}+\hat{y}-\hat{z})$, $\vec{b}=\frac{a}{2}(-\hat{x}+\hat{y}+\hat{z})$ and $\vec{c}=\frac{a}{a}(\hat{x}+\hat{z})$. The primitive translation vectors \bar{A}, \vec{B} and \vec{C} of the reciprocal lattice are
(A) $\vec{A}=\frac{2 \pi}{a}(\hat{x}-\hat{y}), \vec{B}, \frac{2 \pi}{a}(\hat{y}+\hat{z}) ; \quad \vec{C}=\frac{2 \pi}{a}(\hat{x}+\hat{z})$
(B) $\vec{A}=2 \pi(\hat{y}+\hat{y}) ; \quad \vec{B}=\frac{2 \pi}{a}(\hat{y}-\hat{z}) ; \quad \vec{C}=\frac{2 \pi}{a}(\hat{x}+\hat{z})$
(C) $\lambda=\frac{-}{a}(\hat{x}+\hat{y}) ; \quad \vec{B}=\frac{2 \pi}{a}(\hat{y}+\hat{z}) ; \quad \vec{C}=\frac{2 \pi}{a}(\hat{x}-\hat{z})$
($-\vec{A}=\frac{2 \pi}{a}(\hat{x}+\hat{y}) ; \quad \vec{B}=\frac{2 \pi}{a}(\hat{y}+\hat{z}) ; \quad \vec{C}=\frac{2 \pi}{a}(\hat{x}+\hat{z})$
The structure factor of a single cell of identical atoms of form factor f is given by $S_{h k i}=f \sum_{j} \exp \left(-i 2 \pi\left(x_{j} h+y_{j} h+z_{j} l\right)\right)$ where $\left(x_{j}, y_{j}, z_{j}\right)$ is the coordinate of an atom, and $h k l$ are the Miller indices. Which one of the following statement is correct for the diffraction peaks of body centered cubic (BCC) and face centered cubic (FCC) lattices?
(A)BCC : (200); (110); (222)
(B) BCC : (210); (110); (222)
FCC: (111); (311); (400)

Q. 55 The lattice specific heat C of a crystalline solid can be obtained using the Dulong Peth Einstein model and Debye model. At low temperature $\hbar \omega \gg k_{B} T$, which one of the follo statements is true (a and A are constants)
(A) Dulong Petit : $\mathrm{C} \propto \exp (-a / T)$; Einistein : $C=$. constant ; Debye : $C \propto\left(\frac{T}{A}\right)^{3}$
(B) Dulong Petit : $C=$. constant ; Einstein : $C \propto\left(\frac{T}{A}\right)^{3} ;$ Debye : $C \propto \exp (-a / T)$
(C) Dulong Petit : $C=$. constant ; Einstein : $C \propto \frac{e^{-a / T}}{T^{2}}$; Debye : $C \propto\left(\frac{T}{A}\right)^{3}$
(D) Dulong Petit : $C \propto\left(\frac{T}{A}\right)^{3}$; Einstein : $C \propto \frac{e^{-a / T}}{T^{2}} ;$ Debye : $C=$. constanl
Q. 56 A linear diatomic lattice of lattice constant a with masses M and $m(t \geqslant A)$ are coupled by a force constant C. The dispersion relation is given by

$$
\begin{aligned}
& \qquad \omega_{ \pm}^{2}=C\left(\frac{M+m}{M m}\right) \pm\left[C^{2}\left(\frac{M+m}{M m}\right)^{2}-\frac{4 C^{2}}{M}\right. \\
& \text { Which one of the following statements is } \left.\left.\mathrm{INCORR}^{2}\right]^{2}\right]^{1 / 2}
\end{aligned}
$$

(A) The atoms vibrating in transverse mode co ata ono 9 the optical branch.
(B) The maximum frequency of the acousti on ch depends on the mass of the lighter atom m .
(C) The dispersion of frequency in the antio branch is smaller than that in the acoustic branch.
(D) No nomal modes exist in th ac is is branch for any frequency greater than the maximum frequency at $k=\pi / a$.
Q. 57 The kinetic energy of ele tron at a comer of the first Brillouin zone of a two dimensional square lattice is larger the that of an electron at the mid-point of a side of the zone by a factor b. The value of b is
(A) $b=\sqrt{2}$
(B) $b=2$,
(C) $b=4$
(D) $b=8$
Q. 58 An intrith is maconductor with mass of a hole m_{h} and mass of an electron m_{g} is at a finite tem rat re T. If the top of the valence band energy is E_{v} and the bottom of the conduction band warg is 2_{c}, the Ferni energy of the semiconductor is
($E_{F}=\left(\frac{E_{v}+E_{c}}{2}\right)-\frac{3}{4} k_{B} T \ln \left(\frac{m_{j t}}{m_{c}}\right)$
(B) $E_{F}=\left(\frac{k_{B} T}{2}\right)+\frac{3}{4}\left(E_{r}+E_{c}\right) \ln \left(\frac{m_{h}}{m_{e}}\right)$
(C) $E_{F}=\left(\frac{E_{v}+E_{c}}{2}\right)+\frac{3}{4} k_{B} T \ln \left(\frac{m_{h}}{m_{e}}\right)$
(D) $E_{F}=\left(\frac{k_{\theta} T}{2}\right)-\frac{3}{4}\left(E_{v}+E_{c}\right) \ln \left(\frac{m_{f}}{m_{e}}\right)$
Q. 59 Choose the correct statement from the following:
(A) The reaction $\mathrm{K}^{+} \mathrm{K}^{-} \rightarrow p \bar{p}$ can proceed irrespective of the kinetic energies of K^{+}and K^{-}.
Q. 60 The following gives a list of pairs containing (i) a nucleus (ii) one of its properties. Find which is INAPPROPRIATE.
(A) (i) ${ }_{10} \mathrm{Ne}^{20}$ nucleus; (ii) stable nucleus
(B) (i) A spheroidal nucleus; (ii) an electric quadrupole moment
(C) (i) ${ }_{8} \mathrm{O}^{16}$ nucleus; (ii) nuclear spin $\mathrm{J}=1 / 2$
(D) (i) U^{238} nucleus; (ii) Binding energy $=1785 \mathrm{MeV}$ (approximately)
Q. 61 The four possible configurations of neutrons in the ground state of ${ }_{4} \mathrm{Be}^{9}$ nucleus, 2 corcing the shell model, and the associated nuclear spin are listed below. Choose the correct one
(A) $\left(1 \mathrm{~s}_{1 / 2}\right)^{2}\left(1 \mathrm{p}_{3 / 2}\right)^{3} ; \quad \mathrm{J}=3 / 2$
(B) $\left(1 s_{1 / 2}\right)^{2}\left(1 p_{1 / 2}\right)^{2}\left(1 p_{3 / 2}\right)^{1}$.
(C) $\left(1 s_{1 / 2}\right)^{1}\left(1 p_{3 / 2}\right)^{4} ; J=1 / 2$
(D) $\left(1 \mathrm{~s}_{1 / 2}\right)^{2}\left(1 \mathrm{p}_{3 / 2}\right)^{2}\left(1 \mathrm{p}_{1 / 2}\right)^{1}$
Q. 62 The mass difference between the pair of mirror nuclei ${ }_{6} \mathrm{C}^{\prime \prime}$, C is given to be $\Delta \mathrm{MeV} / \mathrm{c}^{2}$. According to the semi-empirical mass formula, the mass di erenc between the pair of mirror nuclei ${ }_{9} \mathrm{~F}^{17}$ and ${ }_{8} \mathrm{O}^{17}$ will approximately be (rest mass of n on $=438.27 \mathrm{MeV} / c^{2}$ and rest mass of neutron $m_{n}=939.57 \mathrm{MeV} / c^{2}$)
(A) $1.39 \Delta \mathrm{MeV} / \mathrm{c}^{2}$
(B) $39 \Delta \quad$ © $) \mathrm{MeV} / c^{2}$
(C) $0.86 \Delta \mathrm{MeV} / \mathrm{c}^{2}$
Q. 63 A heavy nucleus is found to contain more h utrons than protons. This fact is related to which one of the following statemients.
(A) The nuclear force between I utro sis itronger than that between protons.
(B) The nuclear force between - is of a shorter range than those between neutrons, so that a smaller number of no ns a held together by the nuclear force.
(C) Protons are unstabl of it ir humber in a nucleus diminishes. +
(D) It costs mone energy of add a proton to a (heavy) nucleus than a neutron because of the Coulomb re isior between protons.
Q. 64 A neutra pi meson (π^{0}) has a rest-mass of approximately $140 \mathrm{MeV} / \mathrm{c}^{2}$ and a lifetime of τ sec. A π^{0} pro tur in the laboratory is found to decay after $1.25 \tau \mathrm{sec}$ into two photons. Which of the Oiren g sets represents a possible set of energies of the two photons as seen in the labotatory?
A. 70 MeV and 70 MeV
(B) 35 MeV and 100 MeV
(C) 75 MeV and 100 MeV
(D) 25 MeV and 150 MeV
Q. 65 An a.c. voltage of $220 \mathrm{~V}_{\text {ma }}$ is applied to the primary of a $10: 1$ step-down transformer. The secondary of the transformer is centre tapped and connected to a full wave rectifier with a load resistance. The d.c. voltage appearing across the load is
(A) 22
(B) 31
(C) 62
(D) 44
Q. 66 Let I_{1} and I_{2} represent mesh currents in the loop abcda and befcb respectively. The expression describing Kirchoff's voltage loop law in one of the following loops is,

(A) $30 I_{1}-15 I_{2}=10$
(B) $-15 I_{1}+20 I_{2}=-20$
(C) $30 I_{1}-15 I_{2}=-10$
(D) $-15 I_{1}+20 I_{2}=20$
Q. 67 The simplest logic gate circuit corresponding to the Boolean express m, $=P \bar{P} Q$ is
(A)

(C)

Q. 68 An analog onn V is converted into 2-bit binary number. The minimum number of comparators requi acu-t heir reference voltages are
(A, $3,\left(\frac{V}{4}, \frac{V}{2}, \frac{3 V}{4}\right)$
(B) $3,\left(\frac{V}{3}, \frac{2 V}{3}, V\right)$
C) $4,\left(\frac{V}{5}, \frac{2 V}{5}, \frac{3 V}{5}, \frac{4 V}{5}\right)$
(D) $4,\left(\frac{V}{4}, \frac{V}{2}, \frac{3 V}{4}, V\right)$
Q. 69 The following circuit (where $R_{L} \gg R$) performs the operation of

In theT type master-slave JK flip flop is shown along with the clock and input waveform output of flip flop was zero initially, Identify the correct output waveform,

(C)
(D)

Common Data Questions

Common Data for Questions 71-and 75: A beam of identical particles of mass m and energy E is incident from left on a potentio rier f width L (between $0<x<L$) and height V_{0} as shown in the figure ($E<V_{U}$).

L

For $x>L_{L}$ there is tunneling with a transmission coefficient $T>0$. Let $A_{0} A_{R}$ and A_{T} denote the amopitudest
Q. 72 Let the probability current associated with the incident wave be \mathcal{S}_{0}. Let R be the coefficient. Then
(A) the probability current vanishes in the classically forbidden region.
(B) the probability current is $7 S_{0}$ for $x>L$.
(C) for, $x<0$, the probability current is $S_{0}(I+R)$
(D) for $x>L$, the probability current is complex.
Q. 73 The ratio of the reflected to the incident amplitude A_{R} / A_{0} is
(A) $I-A_{1} / A_{\theta}$
(B) $\sqrt{(\mathrm{I}-T)}$ in magnitude
(C) a real negative number
(D)
$\sqrt{\left(1-\left|\frac{A_{T}}{A_{0}}\right|^{2}\right) \frac{E}{V_{0}-E}}$

Common Data for Questions 74 and 75: Consider two concentric of ductii $\%$ spherical shells with inner and outer radii a, b and c, d as shown in the figure. Both the sher 2 amount of positive charges.
Q. 74 The electric field in dit regions are
(A) $\tilde{E}=0, a ; \hat{E}=\frac{-Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$ for $a<r<b$

$$
\overline{\bar{E}}=, \text { for } b<r<c ; \vec{E}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \text { for } r>d
$$

8) $\vec{E}=\frac{-Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$ for $r<a ; \vec{E}=0$ for $a<r<b$
$\bar{E}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$ for $b<r<c ; \vec{E}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$ for $r>d$
(C) $\bar{E}=\frac{-Q}{4 \pi \varepsilon_{0} r^{2}} \hat{户}$ for $r<a ; \bar{E}=0$ for $a<r<b$

$$
\vec{E}=0 \text { for } b<r<c ; \vec{E}=\frac{2 Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \text { for } r>d
$$

Q. 75 In order to have equal surface charge densities on the outer surfaces of both th following conditions should be satisfied
(A) $d=4 b$ and $c=2 a$
(B) $d=2 b$ and $c=\sqrt{2} a$
(C) $d=\sqrt{2} b$ and $c>a$
(D) $d>b$ and $c=\sqrt{2} a$

Linked Answer Questions: Q. 76 to Q. 85 carry two marks each.

Statement for Linked Answer Questions 76 and 77:

Consider the β-decay of a free neutron at rest in the laboratory.
Q. 76 Which of the following configurations of the decay products correspond to the la est en rgy of the anti-neutrino \bar{V} ? (rest mass of electron $m_{e}=0.51 \mathrm{MeV} / c^{2}$, rest mass of prote $m_{p}=020.27 \mathrm{MeV} / c^{2}$ and rest mass of neutron $m_{n}=939.57 \mathrm{MeV} / c^{2}$)
(A) In the laboratory, proton is produced at rest.
(B) In the laboratory, momenta of proton, electron and the ti leo rino all have the same magnitude.
(C) In the laboratory, proton and electron fly-off with (nearly equal ind opposite momenta.
(D) In the laboratory, electron is produced at rest.
Q. 77 Using the result of the above problem, answer followig. Which of the following represents approximately the maximum allowed energy on an ineutrino \bar{v} ?
(A) 1.3 MeV
(B) 0.8 MeV
(C) 6.5 MeV
(D) 2.0 MeV

Statement for Linked Answer Question to rad

Consider a two dimensional electron gas fy ele rons of mass m each in a system of size $L \times L$.
Q. 78 The density of states betwean tergy wand $\varepsilon+d \varepsilon$ is
(A) $\frac{4 \pi L^{2} m}{h^{2}} d \varepsilon$
(b) $\frac{4 \pi^{2} m}{h^{2}} \frac{1}{\sqrt{\varepsilon}} d \varepsilon$
(C) $\frac{4 \pi L^{2} m}{h^{2}} \sqrt{\varepsilon} d \varepsilon$
(D) $\frac{4 \pi L^{2} m}{h^{2}} \varepsilon d \varepsilon$
Q. 79 The ground st e energy E_{0} of the system in terms of the Fermi energy E_{F} and the number of electrons M rit n by
(A) $\frac{1}{s}, E_{F}$
(B) $\frac{1}{2} N E_{F}$
(C) $\frac{2}{3} N E_{F}$
(D) $\frac{3}{5} N E_{F}$

Staten entr Linked Answer Questions 80 and 81:

T. ate of a clock in a spaceship "Suryashakti" is observed from earth to be $3 / 5$ of the rate of the clocks on
Q. 80 The speed of the spaceship "Suryashakti" relative to earth is
(A) $\frac{4}{5} c$
(B) $\frac{3}{5} c$
(C) $\frac{9}{10} c$
(D) $\frac{2}{5} c$
Q. 81 The rate of a clock in a spaceship "Aakashganga" is observed from earth to be $5 / 13$ of the rate of
the clocks on earth. If both Aakachonamand c...

Statement for Linked Answer Questions 82 and 83:

The following circuit contains three operational amplifiers and resistors.

Q. 82 The output voltage at the end of second pera onal amplifier V_{01} is
(A) $V_{01}=3\left(V_{a}+V_{b}+V_{c}\right)$
(C) $\mathrm{V}_{01}=\frac{1}{3}\left(\mathrm{~V}_{\mathrm{a}}+\mathrm{V}_{b}+\mathrm{V}_{c}\right)$
(B) $\mathrm{V}_{\mathrm{OI}}=-\frac{1}{3}\left(\mathrm{~V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}+\mathrm{V}_{\mathrm{c}}\right)$
\square
(D) $V_{01 \sim} \frac{4}{3}\left(V_{a}+V_{b}+V_{c}\right)$
Q. 83 The output V_{01} (at the enu of third op amp) of the above circuit is
(A) $V_{02}=2\left(-V_{b} V_{c}\right)$
(B) $\mathrm{V}_{02}=3\left(\mathrm{~V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}+\mathrm{V}_{\mathrm{c}}\right)$
(C) $=-\frac{I}{2}\left(V_{a}+V_{b}+V_{c}\right)$
(D) Zero

Statement for Linked Answer Questions 84 and 85:

The set V of all polynomials of a real variable x of degree two or less and with real coefficients, a real linear vector space $V \equiv\left\{c_{0}+c_{1} x+c_{2} x^{2}: c_{10}, c_{1}, c_{2} \in R\right\}$.
Q. 84 For $f(x)=a_{0}+a_{1} x+a_{2} x^{2} \in V$ and $g(x)=b_{0}+b_{1} x+b_{2} x^{2} \in V$, which one of the following constitutes an acceptable scalar product?
(A) $(f, g)=a_{0}^{2} b_{0}+a_{1}^{2} b_{1}+a_{2}^{2} b_{2}$
(B) $(f, g)=a_{0}^{2} b_{0}^{2}+a_{1}^{2} b_{1}^{2}+a_{2}^{2} b_{2}^{2}$
(C) $(f, g)=a_{0} b_{0}-a_{1} b_{1}+a_{2} b_{2}$
(D) $(f, g)=a_{0} b_{0}+\frac{a_{1} b_{1}}{2}+\frac{a_{2} b_{2}}{3}$
Q. 85 Using the scalar product obtained in the above question, identify the abspace of V that is orthogonal to $(1+x)$:
(A) $\left\{f(x): b(1-x)+c x^{2} ; b, c \in R\right\}$
(B) $\left\{f(x)=b\left(1-2 \cdot+x^{2} ; b, c \in R\right\}\right.$
(D) $\{f(x): b x \quad, c, R\}$
(C) $\left\{f(x): b+c x^{2} ; b, c \in R\right\}$

